| Line 148: |
Line 148: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | height="100" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> | + | | height="80" | <math>(\mathfrak{L}^\mathfrak{W})_x ~=~ \prod_{p \in X} \mathfrak{L}_{xp}^{\mathfrak{W}_p}</math> |
| | |} | | |} |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | height="100" | | + | | height="80" | |
| | <math> | | <math> |
| − | (\mathfrak{S}^\mathfrak{L})_{uv} ~=~ | + | (\mathfrak{S}^\mathfrak{L})_{xy} ~=~ |
| − | \prod_{x \in X} \mathfrak{S}_{ux}^{\mathfrak{L}_{xv}} | + | \prod_{p \in X} \mathfrak{S}_{xp}^{\mathfrak{L}_{py}} |
| | </math> | | </math> |
| | |} | | |} |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | height="100" | | + | | height="80" | |
| | <math> | | <math> |
| − | ((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_u ~=~
| + | (\mathfrak{S}^\mathfrak{L})_{xp} ~=~ |
| − | (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_u
| + | \prod_{q \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp}} |
| | </math> | | </math> |
| | |} | | |} |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | height="100" | | + | | height="80" | |
| | <math> | | <math> |
| − | (\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_u ~=~ | + | ((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ |
| − | \prod_{x \in X} (\mathfrak{S}^\mathfrak{L})_{ux}^{\mathfrak{W}_x} | + | (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_x |
| | + | </math> |
| | + | |} |
| | + | |
| | + | {| align="center" cellspacing="6" width="90%" |
| | + | | height="80" | |
| | + | <math> |
| | + | (\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ |
| | + | \prod_{p \in X} (\mathfrak{S}^\mathfrak{L})_{xp}^{\mathfrak{W}_p} ~=~ |
| | + | \prod_{p \in X} (\prod_{q \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp}})^{\mathfrak{W}_p} ~=~ |
| | + | \prod_{p \in X} (\prod_{q \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp}\mathfrak{W}_p}) |
| | </math> | | </math> |
| | |} | | |} |