MyWikiBiz, Author Your Legacy — Saturday November 08, 2025
Jump to navigationJump to search
476 bytes added
, 13:33, 27 April 2009
| Line 5,380: |
Line 5,380: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | <math>\begin{matrix}Y^X & = & (X \to Y) & = & \{f : X \to Y \}\end{matrix}</math> | + | | <math>\begin{matrix}Y^X & = & (X \to Y) & = & \{ f : X \to Y \}\end{matrix}</math> |
| | |} | | |} |
| | | | |
| Line 5,388: |
Line 5,388: |
| | | <math>\begin{matrix}|Y^X| & = & |Y|^{|X|}\end{matrix}</math> | | | <math>\begin{matrix}|Y^X| & = & |Y|^{|X|}\end{matrix}</math> |
| | |} | | |} |
| | + | |
| | + | In the special case where <math>Y = \mathbb{B} = \{ 0, 1 \},</math> the function space <math>\mathbb{B}^X</math> is the set of functions <math>\{ f : X \to \mathbb{B} \}.</math> If the elements <math>0, 1 \in \mathbb{B}</math> are interpreted as the logical values <math>\operatorname{false}, \operatorname{true},</math> respectively, then a function of the type <math>X \to \mathbb{B}</math> may be interpreted as a ''proposition'' about the elements in <math>X.\!</math> |
| | | | |
| | ==References== | | ==References== |