Changes

Line 1: Line 1:  +
==Format Samples • Wiki Text==
 +
 +
===MathBB, MathBF, MathCal===
 +
 +
A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math>  It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n</math> features.  Accordingly, the universe of discourse <math>A^\bullet</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math>  For convenience, the data type of a finite set on <math>n</math> elements may be indicated by either one of the equivalent notations, <math>[n]</math> or <math>\mathbf{n}.</math>
 +
 +
===MathFrak===
 +
 +
<p><math>\begin{array}{lccccccccccc}
 +
\mathfrak{M}
 +
& = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \}
 +
\\
 +
& = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \}
 +
\\
 +
& = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \}
 +
\end{array}</math></p>
 +
 +
===TextTT===
 +
 +
For the initial case <math>k = 0,</math> the bound connective is an empty closure, an expression taking one of the forms <math>\texttt{()}, \texttt{( )}, \texttt{(  )}, \ldots</math> with any number of spaces between the parentheses, all of which have the same denotation among propositions.
 +
 +
For the generic case <math>k > 0,</math> the bound connective takes the form <math>\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.</math>
 +
 +
==Format Samples &bull; Screenshots==
 +
 +
===MathJax Fail===
 +
 +
[[File:Format Samples &bull; MathJax Fail.png|640px]]
 +
 +
===MathML View===
 +
 +
[[File:Format Samples &bull; MathML View.png|640px]]
 +
 
==Logic of Relatives==
 
==Logic of Relatives==
   Line 22: Line 55:     
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 3.  Relational Composition'''
+
|+ <math>\text{Table 3.  Relational Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 65: Line 98:  
<br>
 
<br>
   −
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%"
|+ '''Table 9.  Composite of Triadic and Dyadic Relations'''
+
|+ <math>\text{Table 9.  Composite of Triadic and Dyadic Relations}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
Line 114: Line 147:     
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 13.  Another Brand of Composition'''
+
|+ <math>\text{Table 13.  Another Brand of Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 158: Line 191:     
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 15.  Conjunction Via Composition'''
+
|+ <math>\text{Table 15.  Conjunction Via Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 202: Line 235:     
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 18.  Relational Composition P o Q'''
+
|+ <math>\text{Table 18.  Relational Composition}~ P \circ Q</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 243: Line 276:  
<br>
 
<br>
   −
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 
|-
 
|-
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
+
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black" | <math>K\!</math>
 
| style="border-right:1px solid black" | <math>K\!</math>
Line 309: Line 342:  
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
| width="20%" | <math>\operatorname{Sentence}</math>
 
| width="20%" | <math>\operatorname{Sentence}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
|}
 
|}
Line 318: Line 351:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>s_j\!</math>
 
| width="20%" | <math>s_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>C_j\!</math>
 
| width="20%" | <math>C_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>q_j\!</math>
 
| width="20%" | <math>q_j\!</math>
 
|}
 
|}
Line 327: Line 360:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Conc}^0</math>
 
| width="20%" | <math>\operatorname{Conc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{1}</math>
 
| width="20%" | <math>\underline{1}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
|}
 
|}
Line 342: Line 375:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Surc}^0</math>
 
| width="20%" | <math>\operatorname{Surc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{0}</math>
 
| width="20%" | <math>\underline{0}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
|}
 
|}
12,096

edits