Changes

→‎Step 1: markup
Line 857: Line 857:  
|}
 
|}
   −
<pre>
   
Filling in the abbreviations:
 
Filling in the abbreviations:
   −
  y(xz) = x(y(z((KK)(GS)) ))
+
{| align="center" cellpadding="8" width="90%"
 
+
|
          = x(y(z((KK)((F((SK)S))S)) ))
+
<math>\begin{array}{lll}
 
+
y(xz)
          = x(y(z((KK)(((S((KK)S))((SK)S))S)) ))
+
& = &
 +
x(y(z((\operatorname{K}\operatorname{K})(\operatorname{G}\operatorname{S}))~))
 +
\\[8pt]
 +
& = &
 +
x(y(z((\operatorname{K}\operatorname{K})((\operatorname{F}((\operatorname{S}\operatorname{K})\operatorname{S}))\operatorname{S}))~))
 +
\\[8pt]
 +
& = &
 +
x(y(z((\operatorname{K}\operatorname{K})(((\operatorname{S}((\operatorname{K}\operatorname{K})\operatorname{S}))((\operatorname{S}\operatorname{K})\operatorname{S}))\operatorname{S}))~))
 +
\end{array}</math>
 +
|}
    
Thus we have:
 
Thus we have:
   −
  T = (KK)(((S((KK)S))((SK)S))S)
+
{| align="center" cellpadding="8" width="90%"
</pre>
+
|
 +
<math>\begin{matrix}
 +
\operatorname{T}
 +
& = &
 +
(\operatorname{K}\operatorname{K})(((\operatorname{S}((\operatorname{K}\operatorname{K})\operatorname{S}))((\operatorname{S}\operatorname{K})\operatorname{S}))\operatorname{S})
 +
\end{matrix}</math>
 +
|}
    
===Step 2===
 
===Step 2===
12,117

edits