Changes

→‎Step 1: markup
Line 811: Line 811:  
thus completing the abstraction of <math>y.\!</math>
 
thus completing the abstraction of <math>y.\!</math>
   −
<pre>
+
Next, work on <math>\operatorname{K}(((z\operatorname{S})\operatorname{K})\operatorname{S})</math> to extract <math>z,\!</math> starting from the center <math>(z\operatorname{S})\operatorname{K}</math> of the labyrinth and working outward:
Next, work on K(((zS)K)S) to extract z, starting from
  −
the center (zS)K of the labyrinth and working outward:
     −
  (zS)K = (zS)(z(KK))
+
{| align="center" cellpadding="8" width="90%"
 
+
|
          = z(S((KK)S))
+
<math>\begin{matrix}
 +
(z\operatorname{S})\operatorname{K}
 +
& = &
 +
(z\operatorname{S})(z(\operatorname{K}\operatorname{K}))
 +
\\[8pt]
 +
& = &
 +
z(\operatorname{S}((\operatorname{K}\operatorname{K})\operatorname{S}))
 +
\end{matrix}</math>
 +
|}
    +
<pre>
 
For the sake of brevity in the rest of this development,
 
For the sake of brevity in the rest of this development,
 
rename the operator on the right so that (S((KK)S)) = F.
 
rename the operator on the right so that (S((KK)S)) = F.
12,089

edits