Changes

→‎Step 1: markup
Line 10: Line 10:     
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
| <math>x = x \operatorname{I}</math>
+
| <math>x = x\operatorname{I}</math>
 
|}
 
|}
   Line 17: Line 17:  
One is asked to find a ''pure interpretant'' for <math>\operatorname{I},</math> that is, an equivalent term in <math>\langle \operatorname{K}, \operatorname{S} \rangle,</math> the ''combinatory algebra'' generated by <math>\operatorname{K}</math> and <math>\operatorname{S},</math> that does as <math>\operatorname{I}</math> does.
 
One is asked to find a ''pure interpretant'' for <math>\operatorname{I},</math> that is, an equivalent term in <math>\langle \operatorname{K}, \operatorname{S} \rangle,</math> the ''combinatory algebra'' generated by <math>\operatorname{K}</math> and <math>\operatorname{S},</math> that does as <math>\operatorname{I}</math> does.
   −
<pre>
+
A handle on the problem can be gotten by observing the following relationships:
Observe:
     −
  x = (xK)(xK) = x(K(KS))
+
{| align="center" cellpadding="8" width="90%"
 
+
|
  =>
+
<math>\begin{array}{l}
 
+
x = (x\operatorname{K})(x\operatorname{K}) = x(\operatorname{K}(\operatorname{K}\operatorname{S}))
  I = K(KS)
+
\\[6pt]
 +
\Rightarrow
 +
\\[6pt]
 +
\operatorname{I} = \operatorname{K}(\operatorname{K}\operatorname{S})
 +
\end{array}</math>
 +
|}
   −
and so K(KS) constitutes a syntactic algorithm for I.
+
Thus the sequence of operations indicated by <math>\operatorname{K}(\operatorname{K}\operatorname{S})</math> is a <math>\langle \operatorname{K}, \operatorname{S} \rangle</math> proxy for <math>\operatorname{I}.</math>
</pre>
      
===Step 2===
 
===Step 2===
12,080

edits