MyWikiBiz, Author Your Legacy — Saturday December 20, 2025
Jump to navigationJump to search
458 bytes added
, 19:12, 23 March 2009
| Line 10: |
Line 10: |
| | | | |
| | {| align="center" cellpadding="8" width="90%" | | {| align="center" cellpadding="8" width="90%" |
| − | | <math>x = x \operatorname{I}</math> | + | | <math>x = x\operatorname{I}</math> |
| | |} | | |} |
| | | | |
| Line 17: |
Line 17: |
| | One is asked to find a ''pure interpretant'' for <math>\operatorname{I},</math> that is, an equivalent term in <math>\langle \operatorname{K}, \operatorname{S} \rangle,</math> the ''combinatory algebra'' generated by <math>\operatorname{K}</math> and <math>\operatorname{S},</math> that does as <math>\operatorname{I}</math> does. | | One is asked to find a ''pure interpretant'' for <math>\operatorname{I},</math> that is, an equivalent term in <math>\langle \operatorname{K}, \operatorname{S} \rangle,</math> the ''combinatory algebra'' generated by <math>\operatorname{K}</math> and <math>\operatorname{S},</math> that does as <math>\operatorname{I}</math> does. |
| | | | |
| − | <pre>
| + | A handle on the problem can be gotten by observing the following relationships: |
| − | Observe:
| |
| | | | |
| − | x = (xK)(xK) = x(K(KS))
| + | {| align="center" cellpadding="8" width="90%" |
| − | | + | | |
| − | =>
| + | <math>\begin{array}{l} |
| − | | + | x = (x\operatorname{K})(x\operatorname{K}) = x(\operatorname{K}(\operatorname{K}\operatorname{S})) |
| − | I = K(KS)
| + | \\[6pt] |
| | + | \Rightarrow |
| | + | \\[6pt] |
| | + | \operatorname{I} = \operatorname{K}(\operatorname{K}\operatorname{S}) |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| − | and so K(KS) constitutes a syntactic algorithm for I.
| + | Thus the sequence of operations indicated by <math>\operatorname{K}(\operatorname{K}\operatorname{S})</math> is a <math>\langle \operatorname{K}, \operatorname{S} \rangle</math> proxy for <math>\operatorname{I}.</math> |
| − | </pre> | |
| | | | |
| | ===Step 2=== | | ===Step 2=== |