Changes

Line 1,222: Line 1,222:  
\\ \\
 
\\ \\
 
& = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
 
& = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
 +
\end{matrix}</math>
 +
|}
 +
 +
Figure&nbsp;1.5 shows what remains of the difference map <math>\operatorname{D}f</math> when the first order linear contribution <math>\operatorname{d}f</math> is removed, namely:
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\begin{matrix}
 +
\operatorname{r}f
 +
& = & \texttt{uv} \cdot \texttt{du~dv} & + & \texttt{u(v)} \cdot \texttt{du~dv} & + & \texttt{(u)v} \cdot \texttt{du~dv} & + & \texttt{(u)(v)} \cdot \texttt{du dv}
 +
\\ \\
 +
& = & \texttt{du~dv}
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
    
<pre>
 
<pre>
Figure 1.5 shows what remains of the difference map Df
  −
when the first order linear contribution df is removed:
  −
rf = uv du dv + u(v) du dv + (u)v du dv + (u)(v) du dv.
  −
This form can be written more succinctly as rf = du dv.
  −
   
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
12,089

edits