| Line 1,817: |
Line 1,817: |
| | | | |
| | ===Evaluation Rule 1=== | | ===Evaluation Rule 1=== |
| | + | |
| | + | ====Variant 1==== |
| | | | |
| | <pre> | | <pre> |
| Line 1,822: |
Line 1,824: |
| | | | |
| | If f, g : U -> B | | If f, g : U -> B |
| − |
| |
| − | and u C U,
| |
| − |
| |
| − | then the following are equivalent:
| |
| − |
| |
| − | E1a. f(u) = g(u). :V1a
| |
| − | ::
| |
| − | E1b. f(u) <=> g(u). :V1b
| |
| − | ::
| |
| − | E1c. (( f(u) , g(u) )). :V1c
| |
| − | :$1a
| |
| − | ::
| |
| − | E1d. (( f , g ))$(u). :$1b
| |
| − |
| |
| − | Evaluation Rule 1
| |
| − |
| |
| − | If S, T are sentences
| |
| − | about things in the universe U,
| |
| − |
| |
| − | f, g are propositions: U -> B,
| |
| | | | |
| | and u C U, | | and u C U, |
| Line 1,863: |
Line 1,845: |
| | {| align="center" cellpadding="0" cellspacing="0" width="100%" | | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| | |- style="height:48px; text-align:right" | | |- style="height:48px; text-align:right" |
| − | | width="98%" | <math>\text{Value Rule 1}\!</math> | + | | width="98%" | <math>\text{Evaluation Rule 1}\!</math> |
| | | width="2%" | | | | width="2%" | |
| | |} | | |} |
| Line 1,873: |
Line 1,855: |
| | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> | | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| | | width="84%" style="border-top:1px solid black" | <math>f, g ~:~ X \to \underline\mathbb{B}</math> | | | width="84%" style="border-top:1px solid black" | <math>f, g ~:~ X \to \underline\mathbb{B}</math> |
| | + | |- style="height:48px" |
| | + | | |
| | + | | <math>\text{and}\!</math> |
| | + | | <math>x ~\in~ X</math> |
| | |- style="height:48px" | | |- style="height:48px" |
| | | | | | |
| | | <math>\text{then}\!</math> | | | <math>\text{then}\!</math> |
| − | | <math>\text{the following are identical propositions on}~ X:</math> | + | | <math>\text{the following are equivalent:}\!</math> |
| | |} | | |} |
| | |- | | |- |
| Line 1,883: |
Line 1,869: |
| | |- style="height:56px" | | |- style="height:56px" |
| | | width="2%" style="border-top:1px solid black" | | | | width="2%" style="border-top:1px solid black" | |
| − | | width="14%" style="border-top:1px solid black" | <math>\text{V1a.}\!</math> | + | | width="14%" style="border-top:1px solid black" | <math>\text{E1a.}\!</math> |
| − | | width="84%" style="border-top:1px solid black" | <math>\downharpoonleft f ~=~ g \downharpoonright</math> | + | | width="84%" style="border-top:1px solid black" | <math>f(x) ~=~ g(x)</math> |
| | + | |- style="height:56px" |
| | + | | |
| | + | | <math>\text{E1b.}\!</math> |
| | + | | <math>f(x) ~\Leftrightarrow~ g(x)</math> |
| | |- style="height:56px" | | |- style="height:56px" |
| | | | | | |
| − | | <math>\text{V1b.}\!</math> | + | | <math>\text{E1c.}\!</math> |
| − | | <math>\downharpoonleft f ~\Leftrightarrow~ g \downharpoonright</math> | + | | <math>\underline{((}~ f(x) ~,~ g(x) ~\underline{))}</math> |
| | |- style="height:56px" | | |- style="height:56px" |
| | | | | | |
| − | | <math>\text{V1c.}\!</math> | + | | <math>\text{E1d.}\!</math> |
| − | | <math>\underline{((}~ f ~,~ g ~\underline{))}^\$</math> | + | | <math>\underline{((}~ f ~,~ g ~\underline{))}^\$ (x)</math> |
| | |} | | |} |
| | |} | | |} |
| Line 1,945: |
Line 1,935: |
| | | | |
| | <br> | | <br> |
| | + | |
| | + | ====Variant 2==== |
| | + | |
| | + | <pre> |
| | + | Evaluation Rule 1 |
| | + | |
| | + | If S, T are sentences |
| | + | about things in the universe U, |
| | + | |
| | + | f, g are propositions: U -> B, |
| | + | |
| | + | and u C U, |
| | + | |
| | + | then the following are equivalent: |
| | + | |
| | + | E1a. f(u) = g(u). :V1a |
| | + | :: |
| | + | E1b. f(u) <=> g(u). :V1b |
| | + | :: |
| | + | E1c. (( f(u) , g(u) )). :V1c |
| | + | :$1a |
| | + | :: |
| | + | E1d. (( f , g ))$(u). :$1b |
| | + | </pre> |
| | | | |
| | ===Definition 2=== | | ===Definition 2=== |