Line 1,205: |
Line 1,205: |
| | | |
| ===Logical Translation Rule 2=== | | ===Logical Translation Rule 2=== |
− |
| |
− | <pre>
| |
− | Logical Translation Rule 2
| |
− |
| |
− | If S, T are sentences
| |
− | about things in the universe U
| |
− |
| |
− | and P, Q are propositions: U -> B, such that:
| |
− |
| |
− | L2a. [S] = P and [T] = Q,
| |
− |
| |
− | then the following equations hold:
| |
− |
| |
− | L2b00. [False] = () = 0 : U->B.
| |
− |
| |
− | L2b01. [Neither S nor T] = ([S])([T]) = (P)(Q).
| |
− |
| |
− | L2b02. [Not S, but T] = ([S])[T] = (P) Q.
| |
− |
| |
− | L2b03. [Not S] = ([S]) = (P).
| |
− |
| |
− | L2b04. [S and not T] = [S]([T]) = P (Q).
| |
− |
| |
− | L2b05. [Not T] = ([T]) = (Q).
| |
− |
| |
− | L2b06. [S or T, not both] = ([S], [T]) = (P, Q).
| |
− |
| |
− | L2b07. [Not both S and T] = ([S].[T]) = (P Q).
| |
− |
| |
− | L2b08. [S and T] = [S].[T] = P.Q.
| |
− |
| |
− | L2b09. [S <=> T] = (([S], [T])) = ((P, Q)).
| |
− |
| |
− | L2b10. [T] = [T] = Q.
| |
− |
| |
− | L2b11. [S => T] = ([S]([T])) = (P (Q)).
| |
− |
| |
− | L2b12. [S] = [S] = P.
| |
− |
| |
− | L2b13. [S <= T] = (([S]) [T]) = ((P) Q).
| |
− |
| |
− | L2b14. [S or T] = (([S])([T])) = ((P)(Q)).
| |
− |
| |
− | L2b15. [True] = (()) = 1 : U->B.
| |
− | </pre>
| |
| | | |
| <br> | | <br> |
Line 1,291: |
Line 1,246: |
| | width="2%" style="border-top:1px solid black" | | | | width="2%" style="border-top:1px solid black" | |
| | width="14%" style="border-top:1px solid black" align="left" | <math>\text{L2b}_{0}.\!</math> | | | width="14%" style="border-top:1px solid black" align="left" | <math>\text{L2b}_{0}.\!</math> |
− | | width="28%" style="border-top:1px solid black" | | + | | width="32%" style="border-top:1px solid black" | |
| <math>\downharpoonleft \operatorname{false} \downharpoonright</math> | | <math>\downharpoonleft \operatorname{false} \downharpoonright</math> |
| | width="4%" style="border-top:1px solid black" | <math>=\!</math> | | | width="4%" style="border-top:1px solid black" | <math>=\!</math> |
− | | width="24%" style="border-top:1px solid black" | <math>(~)</math> | + | | width="28%" style="border-top:1px solid black" | <math>(~)</math> |
| | width="4%" style="border-top:1px solid black" | <math>=\!</math> | | | width="4%" style="border-top:1px solid black" | <math>=\!</math> |
− | | width="24%" style="border-top:1px solid black" | | + | | width="16%" style="border-top:1px solid black" | <math>(~)</math> |
− | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> | |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
Line 1,317: |
Line 1,271: |
| | | | | |
| | align="left" | <math>\text{L2b}_{3}.\!</math> | | | align="left" | <math>\text{L2b}_{3}.\!</math> |
− | | <math>\downharpoonleft \operatorname{not}~ s\downharpoonright</math> | + | | <math>\downharpoonleft \operatorname{not}~ s \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(\downharpoonleft s \downharpoonright)</math> | | | <math>(\downharpoonleft s \downharpoonright)</math> |
Line 1,325: |
Line 1,279: |
| | | | | |
| | align="left" | <math>\text{L2b}_{4}.\!</math> | | | align="left" | <math>\text{L2b}_{4}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{and~not}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>p (q)\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{5}.\!</math> | | | align="left" | <math>\text{L2b}_{5}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft \operatorname{not}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>(\downharpoonleft t \downharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>(q)\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{6}.\!</math> | | | align="left" | <math>\text{L2b}_{6}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{or}~ t, ~\operatorname{not~both} \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>(\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>(p, q)\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{7}.\!</math> | | | align="left" | <math>\text{L2b}_{7}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft \operatorname{not~both}~ s ~\operatorname{and}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>(\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>(p q)\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{8}.\!</math> | | | align="left" | <math>\text{L2b}_{8}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{and}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>p q\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{9}.\!</math> | | | align="left" | <math>\text{L2b}_{9}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{is~equivalent~to}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>((\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>((p, q))\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{10}.\!</math> | | | align="left" | <math>\text{L2b}_{10}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>\downharpoonleft t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>q\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{11}.\!</math> | | | align="left" | <math>\text{L2b}_{11}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{implies}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>(\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>(p (q))\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{12}.\!</math> | | | align="left" | <math>\text{L2b}_{12}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>\downharpoonleft s \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>p\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{13}.\!</math> | | | align="left" | <math>\text{L2b}_{13}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{is~implied~by}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>((\downharpoonleft s \downharpoonright) \downharpoonleft t \downharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>((p) q)\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
| | align="left" | <math>\text{L2b}_{14}.\!</math> | | | align="left" | <math>\text{L2b}_{14}.\!</math> |
− | | <math>\downharpoonleft \ldots \downharpoonright</math> | + | | <math>\downharpoonleft s ~\operatorname{or}~ t \downharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots \downharpoonleft \ldots \downharpoonright \ldots</math> | + | | <math>((\downharpoonleft s \downharpoonright)(\downharpoonleft t \downharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\ldots</math> | + | | <math>((p)(q))\!</math> |
| |- style="height:52px" | | |- style="height:52px" |
| | | | | |
Line 1,417: |
Line 1,371: |
| | <math>((~))</math> | | | <math>((~))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\underline{1} ~:~ X \to \underline\mathbb{B}</math> | + | | <math>((~))</math> |
| |} | | |} |
| |} | | |} |