Changes

→‎Stretching Exercises: mathematical markup
Line 2,363: Line 2,363:  
The arrays of boolean connections described above, namely, the boolean functions <math>F^{(k)} : \underline\mathbb{B}^k \to \underline\mathbb{B},</math> for <math>k\!</math> in <math>\{ 0, 1, 2 \},\!</math> supply enough material to demonstrate the use of the stretch operation in a variety of concrete cases.
 
The arrays of boolean connections described above, namely, the boolean functions <math>F^{(k)} : \underline\mathbb{B}^k \to \underline\mathbb{B},</math> for <math>k\!</math> in <math>\{ 0, 1, 2 \},\!</math> supply enough material to demonstrate the use of the stretch operation in a variety of concrete cases.
   −
For example, suppose that <math>F\!</math> is a connection of the form <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B},</math> that is, any one of the sixteen possibilities in Table&nbsp;18, while <math>p\!</math> and <math>q\!</math> are propositions of the form <math>p, q : X \to \underline\mathbb{B},</math> that is, propositions about things in the universe <math>X,\!</math>, or else the indicators of sets contained in <math>X.\!</math>
+
For example, suppose that <math>F\!</math> is a connection of the form <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B},</math> that is, any one of the sixteen possibilities in Table&nbsp;18, while <math>p\!</math> and <math>q\!</math> are propositions of the form <math>p, q : X \to \underline\mathbb{B},</math> that is, propositions about things in the universe <math>X,\!</math> or else the indicators of sets contained in <math>X.\!</math>
    
Then one has the imagination <math>\underline{f} = (f_1, f_2) = (p, q) : (X \to \underline\mathbb{B})^2,</math> and the stretch of the connection <math>F\!</math> to <math>\underline{f}</math> on <math>X\!</math> amounts to a proposition <math>F^\$ (p, q) : X \to \underline\mathbb{B}</math> that may be read as the ''stretch of <math>F\!</math> to <math>p\!</math> and <math>q.\!</math>''  If one is concerned with many different propositions about things in <math>X,\!</math> or if one is abstractly indifferent to the particular choices for <math>p\!</math> and <math>q,\!</math> then one may detach the operator <math>F^\$ : (X \to \underline\mathbb{B}))^2 \to (X \to \underline\mathbb{B})),</math> called the ''stretch of <math>F\!</math> over <math>X,\!</math>'' and consider it in isolation from any concrete application.
 
Then one has the imagination <math>\underline{f} = (f_1, f_2) = (p, q) : (X \to \underline\mathbb{B})^2,</math> and the stretch of the connection <math>F\!</math> to <math>\underline{f}</math> on <math>X\!</math> amounts to a proposition <math>F^\$ (p, q) : X \to \underline\mathbb{B}</math> that may be read as the ''stretch of <math>F\!</math> to <math>p\!</math> and <math>q.\!</math>''  If one is concerned with many different propositions about things in <math>X,\!</math> or if one is abstractly indifferent to the particular choices for <math>p\!</math> and <math>q,\!</math> then one may detach the operator <math>F^\$ : (X \to \underline\mathbb{B}))^2 \to (X \to \underline\mathbb{B})),</math> called the ''stretch of <math>F\!</math> over <math>X,\!</math>'' and consider it in isolation from any concrete application.
   −
<pre>
+
When the cactus notation is used to represent boolean functions, a single <math>\$</math> sign at the end of the expression is enough to remind the reader that the connections are meant to be stretched to several propositions on a universe <math>X.\!</math>
When the "cactus notation" is used to represent boolean functions,
  −
a single "$" sign at the end of the expression is enough to remind
  −
a reader that the connections are meant to be stretched to several
  −
propositions on a universe X.
     −
For instance, take the connection F : %B%^2 -> %B% such that:
+
For example, take the connection <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B}</math> such that:
   −
F(x, y) = F^2_06 (x, y) = -(x, y)-.
+
: <math>F(x, y) ~=~ F_{6}^{(2)} (x, y) ~=~ \underline{(}~x~,~y~\underline{)}</math>
    +
<pre>
 
This connection is the boolean function on a couple of variables x, y
 
This connection is the boolean function on a couple of variables x, y
 
that yields a value of %1% if and only if just one of x, y is not %1%,
 
that yields a value of %1% if and only if just one of x, y is not %1%,
12,089

edits