Changes

Line 395: Line 395:  
<p><math>\operatorname{Conc}^k_j s_j \ = \ \operatorname{Prec}(\operatorname{Conc}^{k-1}_j s_j, s_k).</math></p></li>
 
<p><math>\operatorname{Conc}^k_j s_j \ = \ \operatorname{Prec}(\operatorname{Conc}^{k-1}_j s_j, s_k).</math></p></li>
   −
</ol></ol></ol>
+
</ol></ol>
 +
 
 +
<li>
 +
<p>The conception of the <math>k\!</math>-place surcatenation operation can be extended to include its natural "prequel":</p>
 +
 
 +
<p><math>\operatorname{Surc}^0 \ = \ ^{\backprime\backprime} \, \operatorname{()} \, ^{\prime\prime}.</math></p>
 +
 
 +
<p>Finally, the construction of the <math>k\!</math>-place surcatenation can be broken into stages by means of the following conceptions:</p>
   −
<pre>
+
<ol style="list-style-type:lower-alpha">
2.  The conception of the k-place surcatenation operation
  −
    can be extended to include its natural "prequel":
     −
    Surc^0  =  "-()-".
+
<li>
 +
<p>A ''subclause'' in <math>\mathfrak{A}^*</math> is a string that ends with a <math>^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
   −
    Finally, the construction of the k-place surcatenation can be
+
<li>
    broken into stages by means of the following conceptions:
+
<p>The ''subcatenation'' <math>\operatorname{Subc} (s_1, s_2)</math> of a subclause <math>s_1\!</math> by a string <math>s_2\!</math> is the string that is defined as follows:</p>
   −
    a.  A "subclause" in !A!* is a string that ends with a ")-".
+
<p><math>\operatorname{Subc} (s_1, s_2) \ = \ s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_2 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
   −
    b.  The "subcatenation" Subc(z_1, z_2)
+
<li>
        of a subclause z_1 by a string z_2 is
+
<p>The ''surcatenation'' of the <math>k\!</math> strings <math>s_1, \ldots, s_k\!</math> can now be defined as an iterated subcatenation over the sequence of <math>k + 1\!</math> strings that starts with the string <math>s_0 \ = \ \operatorname{Surc}^0 \ = \ ^{\backprime\backprime} \, \operatorname{()} \, ^{\prime\prime}</math> and then continues on through the other <math>k\!</math> strings:</p></li>
        the string that is defined as follows:
     −
        Subc(z_1, z_2)  = z_1 · ")-"^(-1) · "," · z_2 · ")-".
+
<ol style="list-style-type:lower-roman">
   −
    c.  The "surcatenation" of the k strings z_1, ..., z_k can now be
+
<li>
        defined as an iterated subcatenation over the sequence of k+1
+
<p><math>\operatorname{Surc}^0_j s_j \ = \ \operatorname{Surc}^0 \ = \ ^{\backprime\backprime} \, \operatorname{()} \, ^{\prime\prime}.</math></p></li>
        strings that starts with the string z_0 = Surc^0 = "-()-" and
  −
        then continues on through the other k strings:
     −
        i.  Surc^0_j  z_j  =  Surc^0 =  "-()-".
+
<li>
 +
<p>For <math>k > 0,\!</math></p>
   −
        ii. For k > 0,
+
<p><math>\operatorname{Surc}^k_j s_j \ = \ \operatorname{Subc}(\operatorname{Surc}^{k-1}_j  s_j, s_k).</math></p></li>
   −
            Surc^k_j  z_j  =  Subc(Surc^(k-1)_j  z_j, z_k).
+
</ol></ol></ol>
    +
<pre>
 
Notice that the expressions Conc^0_j z_j and Surc^0_j z_j
 
Notice that the expressions Conc^0_j z_j and Surc^0_j z_j
 
are defined in such a way that the respective operators
 
are defined in such a way that the respective operators
12,089

edits