Line 205: |
Line 205: |
| The set of logical features <math>\{a_1, \ldots, a_n\}</math> provides a basis for generating an <math>n\!</math>-dimensional ''[[universe of discourse]]'' that I denote as <math>[a_1, \ldots, a_n].</math> It is useful to consider each universe of discourse as a unified categorical object that incorporates both the set of points <math>\langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>f : \langle a_1, \ldots, a_n \rangle \to \mathbb{B}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features. Thus, we may regard the universe of discourse <math>[a_1, \ldots, a_n]</math> as an ordered pair having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}),</math> and we may abbreviate this last type designation as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[\mathbb{B}^n].</math> (Used this way, the angle brackets <math>\langle\ldots\rangle</math> are referred to as ''generator brackets''.) | | The set of logical features <math>\{a_1, \ldots, a_n\}</math> provides a basis for generating an <math>n\!</math>-dimensional ''[[universe of discourse]]'' that I denote as <math>[a_1, \ldots, a_n].</math> It is useful to consider each universe of discourse as a unified categorical object that incorporates both the set of points <math>\langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>f : \langle a_1, \ldots, a_n \rangle \to \mathbb{B}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features. Thus, we may regard the universe of discourse <math>[a_1, \ldots, a_n]</math> as an ordered pair having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}),</math> and we may abbreviate this last type designation as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[\mathbb{B}^n].</math> (Used this way, the angle brackets <math>\langle\ldots\rangle</math> are referred to as ''generator brackets''.) |
| | | |
− | Table 2 exhibits the scheme of notation I use to formalize the domain of propositional calculus, corresponding to the logical content of truth tables and venn diagrams. Although it overworks the square brackets a bit, I also use either one of the equivalent notations [''n''] or '''''n''''' to denote the data type of a finite set on n elements. | + | Table 2 exhibits the scheme of notation I use to formalize the domain of propositional calculus, corresponding to the logical content of truth tables and venn diagrams. Although it overworks the square brackets a bit, I also use either one of the equivalent notations <math>[n]\!</math> or <math>\mathbf{n}</math> to denote the data type of a finite set on <math>n\!</math> elements. |
| | | |
− | <font face="courier new">
| |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
− | |+ '''Table 2. Fundamental Notations for Propositional Calculus''' | + | |+ '''Table 2. Propositional Calculus : Basic Notation''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| ! Symbol | | ! Symbol |
Line 216: |
Line 215: |
| ! Type | | ! Type |
| |- | | |- |
− | | <font face="lucida calligraphy">A<font> | + | | <math>\mathfrak{A}</math> |
− | | {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>} | + | | <math>\lbrace\!</math> “<math>a_1\!</math>” <math>, \ldots,\!</math> “<math>a_n\!</math>” <math>\rbrace\!</math> |
| | Alphabet | | | Alphabet |
− | | [''n''] = '''n''' | + | | <math>[n] = \mathbf{n}</math> |
| |- | | |- |
− | | ''A''<sub>''i''</sub> | + | | <math>\mathcal{A}</math> |
− | | {(''a''<sub>''i''</sub>), ''a''<sub>''i''</sub>} | + | | <math>\{ a_1, \ldots, a_n \}</math> |
− | | Dimension ''i''
| + | | Basis |
− | | '''B'''
| + | | <math>[n] = \mathbf{n}</math> |
| |- | | |- |
− | | ''A'' | + | | <math>A_i\!</math> |
− | | | + | | <math>\{ \overline{a_i}, a_i \}\!</math> |
− | 〈<font face="lucida calligraphy">A</font>〉<br>
| + | | Dimension <math>i\!</math> |
− | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>〉<br>
| + | | <math>\mathbb{B}</math> |
− | {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>›}<br>
| + | |- |
− | ''A''<sub>1</sub> × … × ''A''<sub>''n''</sub><br>
| + | | <math>A\!</math> |
− | ∏<sub>''i''</sub> ''A''<sub>''i''</sub>
| + | | <math>\langle \mathcal{A} \rangle</math><br> |
− | | | + | <math>\langle a_1, \ldots, a_n \rangle</math><br> |
− | Set of cells,<br> | + | <math>\{ (a_1, \ldots, a_n) \}\!</math> |
| + | <math>A_1 \times \ldots \times A_n</math><br> |
| + | <math>\textstyle \prod_i A_i\!</math> |
| + | | Set of cells,<br> |
| coordinate tuples,<br> | | coordinate tuples,<br> |
| points, or vectors<br> | | points, or vectors<br> |
| in the universe<br> | | in the universe<br> |
| of discourse | | of discourse |
− | | '''B'''<sup>''n''</sup> | + | | <math>\mathbb{B}^n</math> |
| |- | | |- |
− | | ''A''* | + | | <math>A^*\!</math> |
− | | (hom : ''A'' → '''B''') | + | | <math>(\operatorname{hom} : A \to \mathbb{B})</math> |
| | Linear functions | | | Linear functions |
− | | ('''B'''<sup>''n''</sup>)* = '''B'''<sup>''n''</sup> | + | | <math>(\mathbb{B}^n)^* \cong \mathbb{B}^n</math> |
| |- | | |- |
− | | ''A''^ | + | | <math>A^\uparrow</math> |
− | | (''A'' → '''B''') | + | | <math>(A \to \mathbb{B})</math> |
| | Boolean functions | | | Boolean functions |
− | | '''B'''<sup>''n''</sup> → '''B''' | + | | <math>\mathbb{B}^n \to \mathbb{B}</math> |
| |- | | |- |
− | | ''A''<sup>•</sup> | + | | <math>A^\circ</math> |
− | | | + | | <math>[ \mathcal{A} ]</math><br> |
− | [<font face="lucida calligraphy">A</font>]<br>
| + | <math>(A, A^\uparrow)</math><br> |
− | (''A'', ''A''^)<br> | + | <math>(A\ +\!\to \mathbb{B})</math><br> |
− | (''A'' +→ '''B''')<br> | + | <math>(A, (A \to \mathbb{B}))</math><br> |
− | (''A'', (''A'' → '''B'''))<br> | + | <math>[ a_1, \ldots, a_n ]</math> |
− | [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>]
| + | | Universe of discourse<br> |
− | | | |
− | Universe of discourse<br> | |
| based on the features<br> | | based on the features<br> |
− | {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>}
| + | <math>\{ a_1, \ldots, a_n \}</math> |
− | | | + | | <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))</math><br> |
− | ('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> → '''B'''))<br> | + | <math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br> |
− | ('''B'''<sup>''n''</sup> +→ '''B''')<br> | + | <math>[\mathbb{B}^n]</math> |
− | ['''B'''<sup>''n''</sup>] | |
| |} | | |} |
− | </font><br>
| + | <br> |
| | | |
| ===Qualitative Logic and Quantitative Analogy=== | | ===Qualitative Logic and Quantitative Analogy=== |