Changes

Line 205: Line 205:  
The set of logical features <math>\{a_1, \ldots, a_n\}</math> provides a basis for generating an <math>n\!</math>-dimensional ''[[universe of discourse]]'' that I denote as <math>[a_1, \ldots, a_n].</math>  It is useful to consider each universe of discourse as a unified categorical object that incorporates both the set of points <math>\langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>f : \langle a_1, \ldots, a_n \rangle \to \mathbb{B}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features.  Thus, we may regard the universe of discourse <math>[a_1, \ldots, a_n]</math> as an ordered pair having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}),</math> and we may abbreviate this last type designation as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[\mathbb{B}^n].</math>  (Used this way, the angle brackets <math>\langle\ldots\rangle</math> are referred to as ''generator brackets''.)
 
The set of logical features <math>\{a_1, \ldots, a_n\}</math> provides a basis for generating an <math>n\!</math>-dimensional ''[[universe of discourse]]'' that I denote as <math>[a_1, \ldots, a_n].</math>  It is useful to consider each universe of discourse as a unified categorical object that incorporates both the set of points <math>\langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>f : \langle a_1, \ldots, a_n \rangle \to \mathbb{B}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features.  Thus, we may regard the universe of discourse <math>[a_1, \ldots, a_n]</math> as an ordered pair having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}),</math> and we may abbreviate this last type designation as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[\mathbb{B}^n].</math>  (Used this way, the angle brackets <math>\langle\ldots\rangle</math> are referred to as ''generator brackets''.)
   −
Table 2 exhibits the scheme of notation I use to formalize the domain of propositional calculus, corresponding to the logical content of truth tables and venn diagrams.  Although it overworks the square brackets a bit, I also use either one of the equivalent notations [''n''] or '''''n''''' to denote the data type of a finite set on n elements.
+
Table 2 exhibits the scheme of notation I use to formalize the domain of propositional calculus, corresponding to the logical content of truth tables and venn diagrams.  Although it overworks the square brackets a bit, I also use either one of the equivalent notations <math>[n]\!</math> or <math>\mathbf{n}</math> to denote the data type of a finite set on <math>n\!</math> elements.
   −
<font face="courier new">
   
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
|+ '''Table 2.  Fundamental Notations for Propositional Calculus'''
+
|+ '''Table 2.  Propositional Calculus : Basic Notation'''
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
 
! Symbol
 
! Symbol
Line 216: Line 215:  
! Type
 
! Type
 
|-
 
|-
| <font face="lucida calligraphy">A<font>
+
| <math>\mathfrak{A}</math>
| {''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>}
+
| <math>\lbrace\!</math>&nbsp;“<math>a_1\!</math>”&nbsp;<math>, \ldots,\!</math>&nbsp;“<math>a_n\!</math>”&nbsp;<math>\rbrace\!</math>
 
| Alphabet
 
| Alphabet
| [''n''] = '''n'''
+
| <math>[n] = \mathbf{n}</math>
 
|-
 
|-
| ''A''<sub>''i''</sub>
+
| <math>\mathcal{A}</math>
| {(''a''<sub>''i''</sub>), ''a''<sub>''i''</sub>}
+
| <math>\{ a_1, \ldots, a_n \}</math>
| Dimension ''i''
+
| Basis
| '''B'''
+
| <math>[n] = \mathbf{n}</math>
 
|-
 
|-
| ''A''
+
| <math>A_i\!</math>
|
+
| <math>\{ \overline{a_i}, a_i \}\!</math>
<font face="lucida calligraphy">A</font><br>
+
| Dimension <math>i\!</math>
〈''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub><br>
+
| <math>\mathbb{B}</math>
{‹''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>›}<br>
+
|-
''A''<sub>1</sub> &times; &hellip; &times; ''A''<sub>''n''</sub><br>
+
| <math>A\!</math>
&prod;<sub>''i''</sub> ''A''<sub>''i''</sub>
+
| <math>\langle \mathcal{A} \rangle</math><br>
|
+
<math>\langle a_1, \ldots, a_n \rangle</math><br>
Set of cells,<br>
+
<math>\{ (a_1, \ldots, a_n) \}\!</math>
 +
<math>A_1 \times \ldots \times A_n</math><br>
 +
<math>\textstyle \prod_i A_i\!</math>
 +
| Set of cells,<br>
 
coordinate tuples,<br>
 
coordinate tuples,<br>
 
points, or vectors<br>
 
points, or vectors<br>
 
in the universe<br>
 
in the universe<br>
 
of discourse
 
of discourse
| '''B'''<sup>''n''</sup>
+
| <math>\mathbb{B}^n</math>
 
|-
 
|-
| ''A''*
+
| <math>A^*\!</math>
| (hom : ''A'' &rarr; '''B''')
+
| <math>(\operatorname{hom} : A \to \mathbb{B})</math>
 
| Linear functions
 
| Linear functions
| ('''B'''<sup>''n''</sup>)* = '''B'''<sup>''n''</sup>
+
| <math>(\mathbb{B}^n)^* \cong \mathbb{B}^n</math>
 
|-
 
|-
| ''A''^
+
| <math>A^\uparrow</math>
| (''A'' &rarr; '''B''')
+
| <math>(A \to \mathbb{B})</math>
 
| Boolean functions
 
| Boolean functions
| '''B'''<sup>''n''</sup> &rarr; '''B'''
+
| <math>\mathbb{B}^n \to \mathbb{B}</math>
 
|-
 
|-
| ''A''<sup>&bull;</sup>
+
| <math>A^\circ</math>
|
+
| <math>[ \mathcal{A} ]</math><br>
[<font face="lucida calligraphy">A</font>]<br>
+
<math>(A, A^\uparrow)</math><br>
(''A'', ''A''^)<br>
+
<math>(A\ +\!\to \mathbb{B})</math><br>
(''A'' +&rarr; '''B''')<br>
+
<math>(A, (A \to \mathbb{B}))</math><br>
(''A'', (''A'' &rarr; '''B'''))<br>
+
<math>[ a_1, \ldots, a_n ]</math>
[''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>]
+
| Universe of discourse<br>
|
  −
Universe of discourse<br>
   
based on the features<br>
 
based on the features<br>
{''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>}
+
<math>\{ a_1, \ldots, a_n \}</math>
|
+
| <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))</math><br>
('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> &rarr; '''B'''))<br>
+
<math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br>
('''B'''<sup>''n''</sup> +&rarr; '''B''')<br>
+
<math>[\mathbb{B}^n]</math>
['''B'''<sup>''n''</sup>]
   
|}
 
|}
</font><br>
+
<br>
    
===Qualitative Logic and Quantitative Analogy===
 
===Qualitative Logic and Quantitative Analogy===
12,089

edits