Line 2,921: |
Line 2,921: |
| Introduce a suitably generic definition of the extended universe of discourse: | | Introduce a suitably generic definition of the extended universe of discourse: |
| | | |
− | : Let <math>U = X_1 \times \ldots \times X_k</math> and <math>\operatorname{E}U = U \times \operatorname{d}U = X_1 \times \ldots \times X_k \times \operatorname{d}X_1 \times \ldots \times \operatorname{d}X_k.</math> | + | : For <math>U = X_1 \times \ldots \times X_k</math>, |
| + | |
| + | : let <math>\operatorname{E}U = U \times \operatorname{d}U = X_1 \times \ldots \times X_k \times \operatorname{d}X_1 \times \ldots \times \operatorname{d}X_k.</math> |
| | | |
| For a proposition <math>f : X_1 \times \ldots \times X_k \to \mathbb{B},</math> the (first order) enlargement of <math>f\!</math> is the proposition <math>\operatorname{E}f : \operatorname{E}U \to \mathbb{B}</math> that is defined by: | | For a proposition <math>f : X_1 \times \ldots \times X_k \to \mathbb{B},</math> the (first order) enlargement of <math>f\!</math> is the proposition <math>\operatorname{E}f : \operatorname{E}U \to \mathbb{B}</math> that is defined by: |
Line 3,083: |
Line 3,085: |
| | | | | |
| |- | | |- |
− | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | + | | f<sub>0</sub> |
| + | | f<sub>0000</sub> |
| + | | 0 0 0 0 |
| + | | ( ) |
| + | | false |
| + | | 0 |
| |- | | |- |
− | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | + | | f<sub>1</sub> |
| + | | f<sub>0001</sub> |
| + | | 0 0 0 1 |
| + | | (x)(y) |
| + | | neither x nor y |
| + | | ¬x ∧ ¬y |
| |- | | |- |
− | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | + | | f<sub>2</sub> |
| + | | f<sub>0010</sub> |
| + | | 0 0 1 0 |
| + | | (x) y |
| + | | y and not x |
| + | | ¬x ∧ y |
| |- | | |- |
− | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | + | | f<sub>3</sub> |
| + | | f<sub>0011</sub> |
| + | | 0 0 1 1 |
| + | | (x) |
| + | | not x |
| + | | ¬x |
| |- | | |- |
− | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | + | | f<sub>4</sub> |
| + | | f<sub>0100</sub> |
| + | | 0 1 0 0 |
| + | | x (y) |
| + | | x and not y |
| + | | x ∧ ¬y |
| |- | | |- |
− | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | + | | f<sub>5</sub> |
| + | | f<sub>0101</sub> |
| + | | 0 1 0 1 |
| + | | (y) |
| + | | not y |
| + | | ¬y |
| |- | | |- |
− | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | + | | f<sub>6</sub> |
| + | | f<sub>0110</sub> |
| + | | 0 1 1 0 |
| + | | (x, y) |
| + | | x not equal to y |
| + | | x ≠ y |
| |- | | |- |
− | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | + | | f<sub>7</sub> |
| + | | f<sub>0111</sub> |
| + | | 0 1 1 1 |
| + | | (x y) |
| + | | not both x and y |
| + | | ¬x ∨ ¬y |
| |- | | |- |
− | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | + | | f<sub>8</sub> |
| + | | f<sub>1000</sub> |
| + | | 1 0 0 0 |
| + | | x y |
| + | | x and y |
| + | | x ∧ y |
| |- | | |- |
− | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | + | | f<sub>9</sub> |
| + | | f<sub>1001</sub> |
| + | | 1 0 0 1 |
| + | | ((x, y)) |
| + | | x equal to y |
| + | | x = y |
| |- | | |- |
− | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | + | | f<sub>10</sub> |
| + | | f<sub>1010</sub> |
| + | | 1 0 1 0 |
| + | | y |
| + | | y |
| + | | y |
| |- | | |- |
− | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | + | | f<sub>11</sub> |
| + | | f<sub>1011</sub> |
| + | | 1 0 1 1 |
| + | | (x (y)) |
| + | | not x without y |
| + | | x → y |
| |- | | |- |
− | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | + | | f<sub>12</sub> |
| + | | f<sub>1100</sub> |
| + | | 1 1 0 0 |
| + | | x |
| + | | x |
| + | | x |
| |- | | |- |
− | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | + | | f<sub>13</sub> |
| + | | f<sub>1101</sub> |
| + | | 1 1 0 1 |
| + | | ((x) y) |
| + | | not y without x |
| + | | x ← y |
| |- | | |- |
− | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y .|| x ∨ y | + | | f<sub>14</sub> |
| + | | f<sub>1110</sub> |
| + | | 1 1 1 0 |
| + | | ((x)(y)) |
| + | | x or y |
| + | | x ∨ y |
| |- | | |- |
− | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | + | | f<sub>15</sub> |
| + | | f<sub>1111</sub> |
| + | | 1 1 1 1 |
| + | | (( )) |
| + | | true |
| + | | 1 |
| |} | | |} |
| <br> | | <br> |