Changes

MyWikiBiz, Author Your Legacy — Wednesday September 10, 2025
Jump to navigationJump to search
→‎Note 7: edit & markup
Line 2,802: Line 2,802:  
The models of <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X\!</math> can be comprehended as follows:
 
The models of <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X\!</math> can be comprehended as follows:
   −
*<p>Working in the ''summary coefficient'' form of representation, if the coordinate list <math>\mathbf{x}\!</math> is a model of <math>q\!</math> in <math>X,\!</math> then one can construct a coordinate list <math>\operatorname{e}\mathbf{x}\!</math> as a model for <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X\!</math> just by appending any combination of values for the differential variables in <math>\operatorname{d}\mathcal{X}.</math></p><p>For example, to focus once again on the center cell <math>c,\!</math> which happens to be a model of the proposition <math>q\!</math> in <math>X,\!</math> one can extend <math>c\!</math> in eight different ways into <math>\operatorname{E}X,\!</math> and thus get eight models of the tacit extension <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X.\!</math></p>
+
*<p>Working in the ''summary coefficient'' form of representation, if the coordinate list <math>\mathbf{x}\!</math> is a model of <math>q\!</math> in <math>X,\!</math> then one can construct a coordinate list <math>\operatorname{e}\mathbf{x}\!</math> as a model for <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X\!</math> just by appending any combination of values for the differential variables in <math>\operatorname{d}\mathcal{X}.</math></p><p>For example, to focus once again on the center cell <math>c,\!</math> which happens to be a model of the proposition <math>q\!</math> in <math>X,\!</math> one can extend <math>c\!</math> in eight different ways into <math>\operatorname{E}X,\!</math> and thus get eight models of the tacit extension <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X.\!</math></p><p>It is a trivial exercise to write these out, but it is useful to do so at least once in order to see the patterns of data involved.</p><p>The tacit extensions of <math>c\!</math> that are models of <math>\operatorname{e}q\!</math> in <math>\operatorname{E}X\!</math> are as follows:</p>
    
<pre>
 
<pre>
    Though it may seem an utter triviality to write these
  −
    out, I will do it for the sake of seeing the patterns.
  −
  −
    The models of eq in EX that are tacit extensions of c:
  −
   
     <u, v, w, du, dv, dw> =
 
     <u, v, w, du, dv, dw> =
   Line 2,820: Line 2,815:  
     <1, 1, 1,  1,  1,  0>,
 
     <1, 1, 1,  1,  1,  0>,
 
     <1, 1, 1,  1,  1,  1>.
 
     <1, 1, 1,  1,  1,  1>.
 +
</pre>
    +
<pre>
 
2.  Working in the "conjunctive product" form of representation,
 
2.  Working in the "conjunctive product" form of representation,
 
     if the conjunct symbol x is a model of q in X, then one can
 
     if the conjunct symbol x is a model of q in X, then one can
12,089

edits

Navigation menu