Line 5,035: |
Line 5,035: |
| |} | | |} |
| | | |
− | Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47. | + | <br> |
| + | |
| + | Let us recapitulate the story so far. We have in effect been carrying out a decomposition of the enlarged proposition <math>\mathrm{E}J\!</math> in a series of stages. First, we considered the equation <math>\mathrm{E}J = \boldsymbol\varepsilon J + \mathrm{D}J,\!</math> which was involved in the definition of <math>\mathrm{D}J\!</math> as the difference <math>\mathrm{E}J - \boldsymbol\varepsilon J.\!</math> Next, we contemplated the equation <math>\mathrm{D}J = \mathrm{d}J + \mathrm{r}J,\!</math> which expresses <math>\mathrm{D}J\!</math> in terms of two components, the differential <math>\mathrm{d}J\!</math> that was just extracted and the residual component <math>\mathrm{r}J = \mathrm{D}J - \mathrm{d}J.~\!</math> This remaining proposition <math>\mathrm{r}J\!</math> can be computed as shown in Table 47. |
| + | |
| + | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="text-align:left; width:90%" |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" | + | |+ style="height:30px" | <math>\text{Table 47.} ~~ \text{Computation of}~ \mathrm{r}J\!</math> |
− | |+ Table 47. Computation of r''J'' | |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{*{5}{l}} |
− | | width="6%" | r''J''
| + | \mathrm{r}J & = & \mathrm{D}J & + & \mathrm{d}J |
− | | width="5%" | =
| + | \end{array}\!</math> |
− | | align="center" width="20%" | D''J''
| |
− | | width="3%" | +
| |
− | | align="center" width="20%" | d''J''
| |
− | | width="46%" |
| |
− | |}
| |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{*{9}{l}} |
− | | width="6%" | D''J''
| + | \mathrm{D}J |
− | | width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
− | | width="23%" | + ''u'' (''v'')(d''u'') d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
− | | width="23%" | + (''u'') ''v'' d''u'' (d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
− | | width="23%" | + (''u'')(''v'') d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{d}J |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| |- | | |- |
− | | width="6%" | d''J'' | + | | |
− | | width="25%" | = ''u'' ''v'' (d''u'', d''v'')
| + | <math>\begin{array}{*{9}{l}} |
− | | width="23%" | + ''u'' (''v'') d''v''
| + | \mathrm{r}J ~ |
− | | width="23%" | + (''u'') ''v'' d''u''
| + | & = & u \!\cdot\! v \cdot ~ \mathrm{d}u \cdot \mathrm{d}v ~~~~~~ |
− | | width="23%" | + (''u'')(''v'') <math>\cdot</math> 0
| + | & + & u \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v \, |
| + | & + & \texttt{(} u \texttt{)} v \cdot \, \mathrm{d}u \cdot \mathrm{d}v \, |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}\!</math> |
| |} | | |} |
− | |- | + | |
| + | <br> |
| + | |
| + | As it happens, the remainder <math>\mathrm{r}J\!</math> falls under the description of a second order differential <math>\mathrm{r}J = \mathrm{d}^2 J.\!</math> This means that the expansion of <math>\mathrm{E}J\!</math> in the form: |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{*{7}{l}} |
− | | width="6%" | r''J''
| + | \mathrm{E}J |
− | | width="25%" | = ''u'' ''v'' d''u'' d''v''
| + | & = & \boldsymbol\varepsilon J |
− | | width="23%" | + ''u'' (''v'') d''u'' d''v''
| + | & + & \mathrm{D}J |
− | | width="23%" | + (''u'') ''v'' d''u'' d''v''
| + | \\[6pt] |
− | | width="23%" | + (''u'')(''v'') d''u'' d''v''
| + | & = & \boldsymbol\varepsilon J |
| + | & + & \mathrm{d}J |
| + | & + & \mathrm{r}J |
| + | \\[6pt] |
| + | & = & \mathrm{d}^0 J |
| + | & + & \mathrm{d}^1 J |
| + | & + & \mathrm{d}^2 J |
| + | \end{array}</math> |
| |} | | |} |
− | |}
| |
− | </font><br>
| |
| | | |
− | As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form:
| + | <br> |
| + | |
| + | which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps. |
| + | |
| + | Figures 48-a through 48-d illustrate the proposition <math>\mathrm{r}J = \mathrm{d}^2 J,\!</math> which forms the remainder map of <math>J\!</math> and also, in this instance, the second order differential of <math>J.\!</math> |
| | | |
− | :{| cellpadding=2
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
− | | E''J''
| + | | [[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]] |
− | | =
| |
− | | <math>\epsilon</math>''J'' | |
− | | + | |
− | | D''J''
| |
| |- | | |- |
− | | | + | | height="20px" valign="top" | <math>\text{Figure 48-a.} ~~ \text{Remainder of}~ J ~\text{(Areal)}\!</math> |
− | | =
| |
− | | <math>\epsilon</math>''J'' | |
− | | +
| |
− | | d''J''
| |
− | | +
| |
− | | r''J''
| |
− | |-
| |
− | |
| |
− | | =
| |
− | | d<sup>0</sup>''J''
| |
− | | +
| |
− | | d<sup>1</sup>''J''
| |
− | | +
| |
− | | d<sup>2</sup>''J''
| |
| |} | | |} |
| | | |
− | which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps.
| + | <br> |
| | | |
− | Figures 48-a through 48-d illustrate the proposition r''J'' = d<sup>2</sup>''J'', which forms the remainder map of ''J'' and also, in this instance, the second order differential of ''J''.
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
| + | | [[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]] |
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 48-b.} ~~ \text{Remainder of}~ J ~\text{(Bundle)}\!</math> |
| + | |} |
| | | |
| <br> | | <br> |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p>
| |
− | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p>
| |
| | | |
− | <br>
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p>
| + | | [[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]] |
− | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p>
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 48-c.} ~~ \text{Remainder of}~ J ~\text{(Compact)}\!</math> |
| + | |} |
| | | |
| <br> | | <br> |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p>
| |
− | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p>
| |
| | | |
− | <br>
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p>
| + | | [[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]] |
− | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p>
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 48-d.} ~~ \text{Remainder of}~ J ~\text{(Digraph)}\!</math> |
| + | |} |
| | | |
| =====Summary of Conjunction===== | | =====Summary of Conjunction===== |