Changes

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
update
Line 5,035: Line 5,035:  
|}
 
|}
   −
Let us now recapitulate the story so far.  In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages.  First, we considered the equation E''J''&nbsp;=&nbsp;<math>\epsilon</math>''J''&nbsp;+&nbsp;D''J'', which was involved in the definition of D''J'' as the difference E''J''&nbsp;&ndash;&nbsp;<math>\epsilon</math>''J''. Next, we contemplated the equation D''J''&nbsp;=&nbsp;d''J''&nbsp;+&nbsp;r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J''&nbsp;=&nbsp;D''J''&nbsp;&ndash;&nbsp;d''J''.  This remaining proposition r''J'' can be computed as shown in Table&nbsp;47.
+
<br>
 +
 
 +
Let us recapitulate the story so far.  We have in effect been carrying out a decomposition of the enlarged proposition <math>\mathrm{E}J\!</math> in a series of stages.  First, we considered the equation <math>\mathrm{E}J = \boldsymbol\varepsilon J + \mathrm{D}J,\!</math> which was involved in the definition of <math>\mathrm{D}J\!</math> as the difference <math>\mathrm{E}J - \boldsymbol\varepsilon J.\!</math>  Next, we contemplated the equation <math>\mathrm{D}J = \mathrm{d}J + \mathrm{r}J,\!</math> which expresses <math>\mathrm{D}J\!</math> in terms of two components, the differential <math>\mathrm{d}J\!</math> that was just extracted and the residual component <math>\mathrm{r}J = \mathrm{D}J - \mathrm{d}J.~\!</math> This remaining proposition <math>\mathrm{r}J\!</math> can be computed as shown in Table&nbsp;47.
 +
 
 +
<br>
   −
<font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="text-align:left; width:90%"
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
+
|+ style="height:30px" | <math>\text{Table 47.} ~~ \text{Computation of}~ \mathrm{r}J\!</math>
|+ Table 47. Computation of r''J''
   
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{5}{l}}
| width="6%"  | r''J''
+
\mathrm{r}J & = & \mathrm{D}J & + & \mathrm{d}J
| width="5%"  | =
+
\end{array}\!</math>
| align="center" width="20%" | D''J''
  −
| width="3%"  | +
  −
| align="center" width="20%" | d''J''
  −
| width="46%" | &nbsp;
  −
|}
   
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{9}{l}}
| width="6%"  | D''J''
+
\mathrm{D}J
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
+
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
| width="23%" | + ''u'' (''v'')(d''u'') d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
| width="23%" | + (''u'') ''v'' d''u'' (d''v'')
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{d}J
 +
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
 +
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot 0
 +
\end{array}</math>
 
|-
 
|-
| width="6%"  | d''J''
+
|
| width="25%" | = ''u'' ''v''&nbsp;&nbsp;(d''u'', d''v'')
+
<math>\begin{array}{*{9}{l}}
| width="23%" | + ''u'' (''v'') d''v''
+
\mathrm{r}J ~
| width="23%" | + (''u'') ''v'' d''u''
+
& = & u \!\cdot\! v \cdot ~ \mathrm{d}u \cdot \mathrm{d}v ~~~~~~
| width="23%" | + (''u'')(''v'') <math>\cdot</math> 0
+
& + & u \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
 +
& + & \texttt{(} u \texttt{)} v \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v
 +
\end{array}\!</math>
 
|}
 
|}
|-
+
 
 +
<br>
 +
 
 +
As it happens, the remainder <math>\mathrm{r}J\!</math> falls under the description of a second order differential <math>\mathrm{r}J = \mathrm{d}^2 J.\!</math>  This means that the expansion of <math>\mathrm{E}J\!</math> in the form:
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{7}{l}}
| width="6%"  | r''J''
+
\mathrm{E}J
| width="25%" | = ''u'' ''v''&nbsp;&nbsp;&nbsp;d''u'' d''v''
+
& = & \boldsymbol\varepsilon J
| width="23%" | + ''u'' (''v'') d''u'' d''v''
+
& + & \mathrm{D}J
| width="23%" | + (''u'') ''v'' d''u'' d''v''
+
\\[6pt]
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
& = & \boldsymbol\varepsilon J
 +
& + & \mathrm{d}J
 +
& + & \mathrm{r}J
 +
\\[6pt]
 +
& = & \mathrm{d}^0 J
 +
& + & \mathrm{d}^1 J
 +
& + & \mathrm{d}^2 J
 +
\end{array}</math>
 
|}
 
|}
|}
  −
</font><br>
     −
As it happens, the remainder r''J'' falls under the description of a second order differential r''J''&nbsp;=&nbsp;d<sup>2</sup>''J''.  This means that the expansion of E''J'' in the form:
+
<br>
 +
 
 +
which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps.
 +
 
 +
Figures&nbsp;48-a through 48-d illustrate the proposition <math>\mathrm{r}J = \mathrm{d}^2 J,\!</math> which forms the remainder map of <math>J\!</math> and also, in this instance, the second order differential of <math>J.\!</math>
   −
:{| cellpadding=2
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
| E''J''
+
| [[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]
| =
  −
| <math>\epsilon</math>''J''
  −
| +
  −
| D''J''
   
|-
 
|-
| &nbsp;
+
| height="20px" valign="top" | <math>\text{Figure 48-a.} ~~ \text{Remainder of}~ J ~\text{(Areal)}\!</math>
| =
  −
| <math>\epsilon</math>''J''
  −
| +
  −
| d''J''
  −
| +
  −
| r''J''
  −
|-
  −
| &nbsp;
  −
| =
  −
| d<sup>0</sup>''J''
  −
| +
  −
| d<sup>1</sup>''J''
  −
| +
  −
| d<sup>2</sup>''J''
   
|}
 
|}
   −
which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps.
+
<br>
   −
Figures&nbsp;48-a through 48-d illustrate the proposition r''J''&nbsp;=&nbsp;d<sup>2</sup>''J'', which forms the remainder map of ''J'' and also, in this instance, the second order differential of ''J''.
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
 +
| [[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]
 +
|-
 +
| height="20px" valign="top" | <math>\text{Figure 48-b.} ~~ \text{Remainder of}~ J ~\text{(Bundle)}\!</math>
 +
|}
    
<br>
 
<br>
<p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p>
  −
<p><center><font size="+1">'''Figure 48-a.  Remainder of ''J''&nbsp;&nbsp;(Areal)'''</font></center></p>
     −
<br>
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
<p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p>
+
| [[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]
<p><center><font size="+1">'''Figure 48-b. Remainder of ''J''&nbsp;&nbsp;(Bundle)'''</font></center></p>
+
|-
 +
| height="20px" valign="top" | <math>\text{Figure 48-c.} ~~ \text{Remainder of}~ J ~\text{(Compact)}\!</math>
 +
|}
    
<br>
 
<br>
<p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p>
  −
<p><center><font size="+1">'''Figure 48-c.  Remainder of ''J''&nbsp;&nbsp;(Compact)'''</font></center></p>
     −
<br>
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
<p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p>
+
| [[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]
<p><center><font size="+1">'''Figure 48-d. Remainder of ''J''&nbsp;&nbsp;(Digraph)'''</font></center></p>
+
|-
 +
| height="20px" valign="top" | <math>\text{Figure 48-d.} ~~ \text{Remainder of}~ J ~\text{(Digraph)}\!</math>
 +
|}
    
=====Summary of Conjunction=====
 
=====Summary of Conjunction=====
12,080

edits

Navigation menu