Line 5,035:
Line 5,035:
|}
|}
−
Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47.
+
<br>
+
+
Let us recapitulate the story so far. We have in effect been carrying out a decomposition of the enlarged proposition <math>\mathrm{E}J\!</math> in a series of stages. First, we considered the equation <math>\mathrm{E}J = \boldsymbol\varepsilon J + \mathrm{D}J,\!</math> which was involved in the definition of <math>\mathrm{D}J\!</math> as the difference <math>\mathrm{E}J - \boldsymbol\varepsilon J.\!</math> Next, we contemplated the equation <math>\mathrm{D}J = \mathrm{d}J + \mathrm{r}J,\!</math> which expresses <math>\mathrm{D}J\!</math> in terms of two components, the differential <math>\mathrm{d}J\!</math> that was just extracted and the residual component <math>\mathrm{r}J = \mathrm{D}J - \mathrm{d}J.~\!</math> This remaining proposition <math>\mathrm{r}J\!</math> can be computed as shown in Table 47.
+
+
<br>
−
<font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="text-align:left; width:90%"
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
+
|+ style="height:30px" | <math>\text{Table 47.} ~~ \text{Computation of}~ \mathrm{r}J\!</math>
−
|+ Table 47. Computation of r''J''
|
|
−
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{5}{l}}
−
| width="6%" | r''J''
+
\mathrm{r}J & = & \mathrm{D}J & + & \mathrm{d}J
−
| width="5%" | =
+
\end{array}\!</math>
−
| align="center" width="20%" | D''J''
−
| width="3%" | +
−
| align="center" width="20%" | d''J''
−
| width="46%" |
−
|}
|-
|-
|
|
−
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{9}{l}}
−
| width="6%" | D''J''
+
\mathrm{D}J
−
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
+
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
−
| width="23%" | + ''u'' (''v'')(d''u'') d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
−
| width="23%" | + (''u'') ''v'' d''u'' (d''v'')
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
−
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
+
\\[6pt]
+
\mathrm{d}J
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u
+
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot 0
+
\end{array}</math>
|-
|-
−
| width="6%" | d''J''
+
|
−
| width="25%" | = ''u'' ''v'' (d''u'', d''v'')
+
<math>\begin{array}{*{9}{l}}
−
| width="23%" | + ''u'' (''v'') d''v''
+
\mathrm{r}J ~
−
| width="23%" | + (''u'') ''v'' d''u''
+
& = & u \!\cdot\! v \cdot ~ \mathrm{d}u \cdot \mathrm{d}v ~~~~~~
−
| width="23%" | + (''u'')(''v'') <math>\cdot</math> 0
+
& + & u \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
+
& + & \texttt{(} u \texttt{)} v \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
+
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v
+
\end{array}\!</math>
|}
|}
−
|-
+
+
<br>
+
+
As it happens, the remainder <math>\mathrm{r}J\!</math> falls under the description of a second order differential <math>\mathrm{r}J = \mathrm{d}^2 J.\!</math> This means that the expansion of <math>\mathrm{E}J\!</math> in the form:
+
+
<br>
+
+
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
|
|
−
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
+
<math>\begin{array}{*{7}{l}}
−
| width="6%" | r''J''
+
\mathrm{E}J
−
| width="25%" | = ''u'' ''v'' d''u'' d''v''
+
& = & \boldsymbol\varepsilon J
−
| width="23%" | + ''u'' (''v'') d''u'' d''v''
+
& + & \mathrm{D}J
−
| width="23%" | + (''u'') ''v'' d''u'' d''v''
+
\\[6pt]
−
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
& = & \boldsymbol\varepsilon J
+
& + & \mathrm{d}J
+
& + & \mathrm{r}J
+
\\[6pt]
+
& = & \mathrm{d}^0 J
+
& + & \mathrm{d}^1 J
+
& + & \mathrm{d}^2 J
+
\end{array}</math>
|}
|}
−
|}
−
</font><br>
−
As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form:
+
<br>
+
+
which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps.
+
+
Figures 48-a through 48-d illustrate the proposition <math>\mathrm{r}J = \mathrm{d}^2 J,\!</math> which forms the remainder map of <math>J\!</math> and also, in this instance, the second order differential of <math>J.\!</math>
−
:{| cellpadding=2
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
−
| E''J''
+
| [[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]
−
| =
−
| <math>\epsilon</math>''J''
−
| +
−
| D''J''
|-
|-
−
|
+
| height="20px" valign="top" | <math>\text{Figure 48-a.} ~~ \text{Remainder of}~ J ~\text{(Areal)}\!</math>
−
| =
−
| <math>\epsilon</math>''J''
−
| +
−
| d''J''
−
| +
−
| r''J''
−
|-
−
|
−
| =
−
| d<sup>0</sup>''J''
−
| +
−
| d<sup>1</sup>''J''
−
| +
−
| d<sup>2</sup>''J''
|}
|}
−
which is nothing other than the propositional analogue of a Taylor series, is a decomposition that terminates in a finite number of steps.
+
<br>
−
Figures 48-a through 48-d illustrate the proposition r''J'' = d<sup>2</sup>''J'', which forms the remainder map of ''J'' and also, in this instance, the second order differential of ''J''.
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
+
| [[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]
+
|-
+
| height="20px" valign="top" | <math>\text{Figure 48-b.} ~~ \text{Remainder of}~ J ~\text{(Bundle)}\!</math>
+
|}
<br>
<br>
−
<p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p>
−
<p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p>
−
<br>
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
−
<p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p>
+
| [[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]
−
<p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p>
+
|-
+
| height="20px" valign="top" | <math>\text{Figure 48-c.} ~~ \text{Remainder of}~ J ~\text{(Compact)}\!</math>
+
|}
<br>
<br>
−
<p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p>
−
<p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p>
−
<br>
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
−
<p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p>
+
| [[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]
−
<p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p>
+
|-
+
| height="20px" valign="top" | <math>\text{Figure 48-d.} ~~ \text{Remainder of}~ J ~\text{(Digraph)}\!</math>
+
|}
=====Summary of Conjunction=====
=====Summary of Conjunction=====