Line 8,555: |
Line 8,555: |
| While operating in this context, it is necessary to distinguish ''domains'' in the broad sense from ''domains of definition'' in the narrow sense. For <math>k\!</math>-place relations it is convenient to use the terms ''domain'' and ''quorum'' as references to the wider and narrower sets, respectively. | | While operating in this context, it is necessary to distinguish ''domains'' in the broad sense from ''domains of definition'' in the narrow sense. For <math>k\!</math>-place relations it is convenient to use the terms ''domain'' and ''quorum'' as references to the wider and narrower sets, respectively. |
| | | |
− | For a <math>k\!</math>-place relation <math>L \subseteq X_1 \times \ldots \times X_k,\!</math> I maintain the following usages. | + | For a <math>k\!</math>-place relation <math>L \subseteq X_1 \times \ldots \times X_k,\!</math> we have the following usages. |
| | | |
| # The notation <math>{}^{\backprime\backprime} \operatorname{Dom}_j (L) {}^{\prime\prime}\!</math> denotes the set <math>X_j,\!</math> called the ''domain of <math>L\!</math> at <math>j\!</math>'' or the ''<math>j^\text{th}\!</math> domain of <math>L.\!</math>''. | | # The notation <math>{}^{\backprime\backprime} \operatorname{Dom}_j (L) {}^{\prime\prime}\!</math> denotes the set <math>X_j,\!</math> called the ''domain of <math>L\!</math> at <math>j\!</math>'' or the ''<math>j^\text{th}\!</math> domain of <math>L.\!</math>''. |
Line 8,561: |
Line 8,561: |
| | | |
| {| align="center" cellspacing="8" width="90%" | | {| align="center" cellspacing="8" width="90%" |
− | | <math>\operatorname{Quo}_j (L)\!</math> | + | | |
− | | =
| + | <math>\begin{array}{lll} |
− | | the largest <math>Q \subseteq X_j\!</math> such that <math>L_{Q \,\text{at}\, j}\!</math> is <math>(> 1)\text{-regular at}~ j,\!</math>
| + | \operatorname{Quo}_j (L) |
− | |-
| + | & = & |
− | |
| + | \text{the largest}~ Q \subseteq X_j ~\text{such that}~ ~L_{Q \,\text{at}\, j}~ ~\text{is}~ (> 1)\text{-regular at}~ j, |
− | | =
| + | \\[6pt] |
− | | the largest <math>Q \subseteq X_j\!</math> such that <math>|L_{Q \,\text{at}\, j}| > 1\!</math> for all <math>x \in Q \subseteq X_j.\!</math>
| + | & = & |
| + | \text{the largest}~ Q \subseteq X_j ~\text{such that}~ |L_{Q \,\text{at}\, j}| > 1 ~\text{for all}~ x \in Q \subseteq X_j. |
| + | \end{array}</math> |
| |} | | |} |
| | | |