Tables 42 and 43 show one way that the sign relations <math>L(A)\!</math> and <math>L(B)\!</math> can be extended in a reflective sense through the use of quotational devices, yielding the ''first order reflective extensions'', <math>\operatorname{Ref}^1 L(A)\!</math> and <math>\operatorname{Ref}^1 L(B).\!</math> These extensions add one layer of HA signs and their objects to the sign relations <math>L(A)\!</math> and <math>L(B),\!</math> respectively. The new triples specify that, for each <math>{}^{\langle} x {}^{\rangle}\!</math> in the set <math>\{ {}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle} \},\!</math> the HA sign of the form <math>{}^{\langle\langle} x {}^{\rangle\rangle}\!</math> connotes itself while denoting <math>{}^{\langle} x {}^{\rangle}.\!</math> | Tables 42 and 43 show one way that the sign relations <math>L(A)\!</math> and <math>L(B)\!</math> can be extended in a reflective sense through the use of quotational devices, yielding the ''first order reflective extensions'', <math>\operatorname{Ref}^1 L(A)\!</math> and <math>\operatorname{Ref}^1 L(B).\!</math> These extensions add one layer of HA signs and their objects to the sign relations <math>L(A)\!</math> and <math>L(B),\!</math> respectively. The new triples specify that, for each <math>{}^{\langle} x {}^{\rangle}\!</math> in the set <math>\{ {}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle} \},\!</math> the HA sign of the form <math>{}^{\langle\langle} x {}^{\rangle\rangle}\!</math> connotes itself while denoting <math>{}^{\langle} x {}^{\rangle}.\!</math> |