Changes

MyWikiBiz, Author Your Legacy — Monday September 22, 2025
Jump to navigationJump to search
Line 780: Line 780:  
A '''group''' is a monoid all of whose elements are invertible.  That is, a group is a semigroup with a unit element in which every element has an inverse.  Putting all the pieces together, then, a group <math>\underline{X} = (X, *, e)\!</math> is a set <math>X\!</math> with a binary operation <math>* : X \times X \to X\!</math> and a designated element <math>e\!</math> that is subject to the following three axioms:
 
A '''group''' is a monoid all of whose elements are invertible.  That is, a group is a semigroup with a unit element in which every element has an inverse.  Putting all the pieces together, then, a group <math>\underline{X} = (X, *, e)\!</math> is a set <math>X\!</math> with a binary operation <math>* : X \times X \to X\!</math> and a designated element <math>e\!</math> that is subject to the following three axioms:
   −
{| align="center" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| G1.
+
| width="5%" | '''G1.'''
| (associative)
+
| width="20%" | (associative)
| <math>x*(y*z) ~=~ (x*y)*z,\!</math>
+
| width="30%" | <math>x*(y*z) ~=~ (x*y)*z,\!</math>
| for all <math>x, y, z \in X.\!</math>
+
| width="45%" | for all <math>x, y, z \in X.\!</math>
 
|-
 
|-
| G2.
+
| '''G2.'''
 
| (identity)
 
| (identity)
 
| <math>e*x ~=~ x ~=~ x*e,\!</math>
 
| <math>e*x ~=~ x ~=~ x*e,\!</math>
 
| for some <math>e \in X.\!</math>
 
| for some <math>e \in X.\!</math>
 
|-
 
|-
| G3.
+
| '''G3.'''
 
| (inverses)
 
| (inverses)
 
| <math>x*y ~=~ e ~=~ y*x,\!</math>
 
| <math>x*y ~=~ e ~=~ y*x,\!</math>
12,089

edits

Navigation menu