Sole sufficient operator

MyWikiBiz, Author Your Legacy — Saturday December 04, 2021
Revision as of 00:43, 2 May 2010 by Jon Awbrey (talk | contribs) (+ [syllabus] + [document history])
Jump to navigationJump to search

A sole sufficient operator or a sole sufficient connective is an operator that is sufficient by itself to generate all of the operators in a specified class of operators. In logic, it is a logical operator that suffices to generate all of the boolean-valued functions, \(f : X \to \mathbb{B} \), where \(X\!\) is an arbitrary set and where \(\mathbb{B}\) is a generic 2-element set, typically \(\mathbb{B} = \{ 0, 1 \} = \{ false, true \}\), in particular, to generate all of the finitary boolean functions, \( f : \mathbb{B}^k \to \mathbb{B} \).


Focal nodes


Peer nodes

Logical operators


Related topics


Relational concepts


Information, Inquiry


Related articles

Document history