Changes

Line 2,660: Line 2,660:     
More concretely viewed, the group as a whole pushes the set of sixteen propositions around in such a way that they fall into seven natural classes, called ''orbits''.  One says that the orbits are preserved by the action of the group.  There is an ''Orbit Lemma'' of immense utility to &ldquo;those who count&rdquo; which, depending on your upbringing, you may associate with the names of Burnside, Cauchy, Frobenius, or some subset or superset of these three, vouching that the number of orbits is equal to the mean number of fixed points, in other words, the total number of points (in our case, propositions) that are left unmoved by the separate operations, divided by the order of the group.  In this instance, <math>\mathrm{T}_{00}\!</math> operates as the group identity, fixing all 16 propositions, while the other three group elements fix 4 propositions each, and so we get: &nbsp; Number of Orbits &nbsp;=&nbsp; (4 + 4 + 4 + 16) &divide; 4 &nbsp;=&nbsp; 7. &nbsp; Amazing!
 
More concretely viewed, the group as a whole pushes the set of sixteen propositions around in such a way that they fall into seven natural classes, called ''orbits''.  One says that the orbits are preserved by the action of the group.  There is an ''Orbit Lemma'' of immense utility to &ldquo;those who count&rdquo; which, depending on your upbringing, you may associate with the names of Burnside, Cauchy, Frobenius, or some subset or superset of these three, vouching that the number of orbits is equal to the mean number of fixed points, in other words, the total number of points (in our case, propositions) that are left unmoved by the separate operations, divided by the order of the group.  In this instance, <math>\mathrm{T}_{00}\!</math> operates as the group identity, fixing all 16 propositions, while the other three group elements fix 4 propositions each, and so we get: &nbsp; Number of Orbits &nbsp;=&nbsp; (4 + 4 + 4 + 16) &divide; 4 &nbsp;=&nbsp; 7. &nbsp; Amazing!
 +
 +
{| align="center" cellpadding="0" cellspacing="0" width="90%"
 +
|
 +
<p>Consider what effects that might ''conceivably'' have practical bearings you ''conceive'' the objects of your ''conception'' to have.  Then, your ''conception'' of those effects is the whole of your ''conception'' of the object.</p>
 +
|-
 +
| align="right" | &mdash; Charles Sanders Peirce, &ldquo;Issues of Pragmaticism&rdquo;, (CP&nbsp;5.438)
 +
|}
 +
 +
One other subject that it would be opportune to mention at this point, while we have an object example of a mathematical group fresh in mind, is the relationship between the pragmatic maxim and what are commonly known in mathematics as ''representation principles''.  As it turns out, with regard to its formal characteristics, the pragmatic maxim unites the aspects of a representation principle with the attributes of what would ordinarily be known as a ''closure principle''.  We will consider the form of closure that is invoked by the pragmatic maxim on another occasion, focusing here and now on the topic of group representations.
 +
 +
Let us return to the example of the ''four-group'' <math>V_4.\!</math>  We encountered this group in one of its concrete representations, namely, as a ''transformation group'' that acts on a set of objects, in this case a set of sixteen functions or propositions.  Forgetting about the set of objects that the group transforms among themselves, we may take the abstract view of the group's operational structure, for example, in the form of the group operation table copied here:
 +
 +
<br>
    
==Logical Cacti==
 
==Logical Cacti==
12,080

edits