Line 34: |
Line 34: |
| '''Definition.''' Let the function <math>\lnot_j : \mathbb{B}^k \to \mathbb{B}</math> be defined for each integer <math>j\!</math> in the interval <math>[1, k]\!</math> by the following equation: | | '''Definition.''' Let the function <math>\lnot_j : \mathbb{B}^k \to \mathbb{B}</math> be defined for each integer <math>j\!</math> in the interval <math>[1, k]\!</math> by the following equation: |
| | | |
− | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | <math>\lnot_j (x_1, \ldots, x_j, \ldots, x_k) ~=~ x_1 \land \ldots \land x_{j-1} \land \lnot x_j \land x_{j+1} \land \ldots \land x_k.</math> | | | <math>\lnot_j (x_1, \ldots, x_j, \ldots, x_k) ~=~ x_1 \land \ldots \land x_{j-1} \land \lnot x_j \land x_{j+1} \land \ldots \land x_k.</math> |
| |} | | |} |
Line 40: |
Line 40: |
| Then <math>\nu_k : \mathbb{B}^k \to \mathbb{B}</math> is defined by the following equation: | | Then <math>\nu_k : \mathbb{B}^k \to \mathbb{B}</math> is defined by the following equation: |
| | | |
− | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math> | | | <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math> |
| |} | | |} |
Line 260: |
Line 260: |
| For example, consider two cases at opposite vertices of the cube: | | For example, consider two cases at opposite vertices of the cube: |
| | | |
− | * The point <math>(1, 1, \ldots , 1, 1)</math> with all 1's as coordinates is the point where the conjunction of all posited variables evaluates to <math>1,\!</math> namely, the point where:
| + | {| align="center" cellpadding="8" width="90%" |
− | :: <math>x_1 ~ x_2 ~\ldots~ x_{n-1} ~ x_n ~=~ 1.</math>
| + | | valign="top" | <big>•</big> |
− | | + | | The point <math>(1, 1, \ldots , 1, 1)</math> with all 1's as coordinates is the point where the conjunction of all posited variables evaluates to <math>1,\!</math> namely, the point where: |
− | * The point <math>(0, 0, \ldots , 0, 0)</math> with all 0's as coordinates is the point where the conjunction of all negated variables evaluates to <math>1,\!</math> namely, the point where:
| + | |- |
− | :: <math>\texttt{(} x_1 \texttt{)(} x_2 \texttt{)} \ldots \texttt{(} x_{n-1} \texttt{)(} x_n \texttt{)} ~=~ 1.</math>
| + | | |
| + | | align="center" | <math>x_1 ~ x_2 ~\ldots~ x_{n-1} ~ x_n ~=~ 1.</math> |
| + | |- |
| + | | valign="top" | <big>•</big> |
| + | | The point <math>(0, 0, \ldots , 0, 0)</math> with all 0's as coordinates is the point where the conjunction of all negated variables evaluates to <math>1,\!</math> namely, the point where: |
| + | |- |
| + | | |
| + | | align="center" | <math>\texttt{(} x_1 \texttt{)(} x_2 \texttt{)} \ldots \texttt{(} x_{n-1} \texttt{)(} x_n \texttt{)} ~=~ 1.</math> |
| + | |} |
| | | |
| To pass from these limiting examples to the general case, observe that a singular proposition <math>s : \mathbb{B}^k \to \mathbb{B}</math> can be given canonical expression as a conjunction of literals, <math>s = e_1 e_2 \ldots e_{k-1} e_k</math>. Then the proposition <math>\nu (e_1, e_2, \ldots, e_{k-1}, e_k)</math> is <math>1\!</math> on the points adjacent to the point where <math>s\!</math> is <math>1,\!</math> and 0 everywhere else on the cube. | | To pass from these limiting examples to the general case, observe that a singular proposition <math>s : \mathbb{B}^k \to \mathbb{B}</math> can be given canonical expression as a conjunction of literals, <math>s = e_1 e_2 \ldots e_{k-1} e_k</math>. Then the proposition <math>\nu (e_1, e_2, \ldots, e_{k-1}, e_k)</math> is <math>1\!</math> on the points adjacent to the point where <math>s\!</math> is <math>1,\!</math> and 0 everywhere else on the cube. |