Changes

no edit summary
Line 1: Line 1:  
The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math>
 
The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math>
   −
In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators may be indicated by argument lists in parentheses.  In the following text, a distinctive typeface will be used for logical expressions based on minimal negation operators, for example, <math>\texttt{(x, y, z)}</math> = <math>\nu (x, y, z).\!</math>
+
In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators can be indicated by argument lists in parentheses.  In the following text a distinctive typeface will be used for logical expressions based on minimal negation operators, for example, <math>\texttt{(x, y, z)}</math> = <math>\nu (x, y, z).\!</math>
    
The first four members of this family of operators are shown below, with paraphrases in a couple of other notations, where tildes and primes, respectively, indicate logical negation.
 
The first four members of this family of operators are shown below, with paraphrases in a couple of other notations, where tildes and primes, respectively, indicate logical negation.
12,080

edits