Changes

rewrite
Line 43: Line 43:  
| <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math>
 
| <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math>
 
|}
 
|}
 +
 +
If we think of the point <math>x = (x_1, \ldots, x_k) \in \mathbb{B}^k</math> as indicated by the boolean product <math>x_1 \cdot \ldots \cdot x_k</math> or the logical conjunction <math>x_1 \land \ldots \land x_k,</math> then the minimal negation <math>\texttt{(} x_1, \ldots, x_k \texttt{)}</math> indicates the set of points in <math>\mathbb{B}^k</math> that differ from <math>x\!</math> in exactly one coordinate.  This makes <math>\texttt{(} x_1, \ldots, x_k \texttt{)}</math> a discrete functional analogue of a ''point omitted neighborhood'' in analysis, more exactly, a ''point omitted distance one neighborhood''.  In this light, the minimal negation operator can be recognized as a differential construction, an observation that opens a very wide field.  It also serves to explain a variety of other names for the same concept, for example, ''logical boundary operator'', ''limen operator'', ''threshold operator'', or ''least action operator'', to name but a few.
    
It may also be noted that <math>\texttt{(x, y)}</math> is the same function as <math>x + y\!</math> and <math>x \ne y</math>, and that the inclusive disjunctions indicated for <math>\texttt{(x, y)}</math> and for <math>\texttt{(x, y, z)}</math> may be replaced with exclusive disjunctions without affecting the meaning, because the terms disjoined are already disjoint.  However, the function <math>\texttt{(x, y, z)}</math> is not the same thing as the function <math>x + y + z.\!</math>
 
It may also be noted that <math>\texttt{(x, y)}</math> is the same function as <math>x + y\!</math> and <math>x \ne y</math>, and that the inclusive disjunctions indicated for <math>\texttt{(x, y)}</math> and for <math>\texttt{(x, y, z)}</math> may be replaced with exclusive disjunctions without affecting the meaning, because the terms disjoined are already disjoint.  However, the function <math>\texttt{(x, y, z)}</math> is not the same thing as the function <math>x + y + z.\!</math>
  −
The minimal negation operator ('''mno''') has a legion of aliases:  ''logical boundary operator'', ''[[limen|limen operator]]'', ''threshold operator'', or ''least action operator'', to name but a few.  The rationale for these names is visible in the [[venn diagram]]s of the corresponding operations on [[set]]s.
      
==Truth tables==
 
==Truth tables==
12,080

edits