Line 1,244: |
Line 1,244: |
| We may now interrogate the alleged equation for the third time, working by way of the ''case analysis-synthesis theorem'' (CAST). | | We may now interrogate the alleged equation for the third time, working by way of the ''case analysis-synthesis theorem'' (CAST). |
| | | |
− | {| align="center" cellpadding="8" style="text-align:center; width:90%" | + | {| align="center" cellpadding="8" |
| | | | | |
− | <pre>
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center" |
− | o-----------------------------------------------------------o
| + | |- |
− | | Equation E_1. Proof 3. |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-00.jpg|500px]] |
− | o-----------------------------------------------------------o
| + | |- |
− | | | | + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-01.jpg|500px]] |
− | | q o o r q o r |
| + | |- |
− | | | | | |
| + | | [[Image:Equational Inference Bar -- Cast P.jpg|500px]] |
− | | p o o p p o |
| + | |- |
− | | \ / | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-02.jpg|500px]] |
− | | o---------o |
| + | |- |
− | | \ / |
| + | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] |
− | | \ / |
| + | |- |
− | | \ / |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-03.jpg|500px]] |
− | | \ / |
| + | |- |
− | | o |
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | | |
| + | |- |
− | | | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-04.jpg|500px]] |
− | | | |
| + | |- |
− | | | |
| + | | [[Image:Equational Inference Bar -- Emptiness.jpg|500px]] |
− | | @ |
| + | |- |
− | | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-05.jpg|500px]] |
− | o==================================< CAST "p" >=============o
| + | |- |
− | | |
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | q r q r q r qr |
| + | |- |
− | | o o o o o o o o o |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-06.jpg|500px]] |
− | | | | | |/ |/ |/ |
| + | |- |
− | | o o o o o o |
| + | | [[Image:Equational Inference Bar -- Cast Q.jpg|500px]] |
− | | \ / | \ / | |
| + | |- |
− | | o-------o o-------o |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-07.jpg|500px]] |
− | | \ / \ / | | + | |- |
− | | \ / \ / | | + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | \ / \ / | | + | |- |
− | | o o | | + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-08.jpg|500px]] |
− | | | | | | + | |- |
− | | | | | | + | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] |
− | | | | |
| + | |- |
− | | p o---------------o---o p |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-09.jpg|500px]] |
− | | \ / | | + | |- |
− | | \ / | | + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | \ / |
| + | |- |
− | | \ / |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-10.jpg|500px]] |
− | | \ / |
| + | |- |
− | | \ / |
| + | | [[Image:Equational Inference Bar -- Spike.jpg|500px]] |
− | | \ / |
| + | |- |
− | | @ |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-11.jpg|500px]] |
− | | |
| + | |- |
− | o==================================< Domination >===========o
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | |
| + | |- |
− | | q r q r | | + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-12.jpg|500px]] |
− | | o o o o o o |
| + | |- |
− | | | | | / / / | | + | | [[Image:Equational Inference Bar -- Cast R.jpg|500px]] |
− | | o o o o o o |
| + | |- |
− | | \ / | \ / | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-13.jpg|500px]] |
− | | o-------o o-------o |
| + | |- |
− | | \ / \ / | | + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | \ / \ / | | + | |- |
− | | \ / \ / | | + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-14.jpg|500px]] |
− | | o o | | + | |- |
− | | | | |
| + | | [[Image:Equational Inference Bar -- Emptiness.jpg|500px]] |
− | | | | |
| + | |- |
− | | | | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-15.jpg|500px]] |
− | | p o---------------o---o p |
| + | |- |
− | | \ / | | + | | [[Image:Equational Inference Bar -- Spike.jpg|500px]] |
− | | \ / | | + | |- |
− | | \ / |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-16.jpg|500px]] |
− | | \ / |
| + | |- |
− | | \ / |
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | \ / |
| + | |- |
− | | \ / |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-17.jpg|500px]] |
− | | @ |
| + | |- |
− | | |
| + | | [[Image:Equational Inference Bar -- QED.jpg|500px]] |
− | o==================================< Cancellation >=========o
| + | |} |
− | | |
| |
− | | q r q r | | |
− | | o o o |
| |
− | | | | | |
| |
− | | o o o |
| |
− | | \ / | |
| |
− | | o-------o o-------o | | |
− | | \ / \ / | | |
− | | \ / \ / | | |
− | | \ / \ / | | |
− | | o o |
| |
− | | | | | | |
− | | | | |
| |
− | | | | |
| |
− | | p o---------------o---o p |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Emptiness >============o
| |
− | | |
| |
− | | q r q r | | |
− | | o o o | | |
− | | | | | |
| |
− | | o o o |
| |
− | | \ / | |
| |
− | | o-------o o |
| |
− | | \ / | |
| |
− | | \ / | |
| |
− | | \ / | |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | p o---------------o---o p | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Cancellation >=========o
| |
− | | |
| |
− | | q r q r | | |
− | | o o o |
| |
− | | | | | | | |
− | | o o o |
| |
− | | \ / | |
| |
− | | o-------o |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | o |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | p o---------------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< CAST "q" >=============o
| |
− | | |
| |
− | | o o |
| |
− | | r r | r | |
| |
− | | o o o o o o r |
| |
− | | | | | | | | |
| |
− | | o o o o o o |
| |
− | | \ / | \ / | |
| |
− | | o-------o o-------o | | |
− | | \ / \ / | | |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Domination >===========o
| |
− | | |
| |
− | | o o | | |
− | | r r | r | |
| |
− | | o o o o o o |
| |
− | | | | | | | | |
| |
− | | o o o o o o |
| |
− | | \ / | \ / | |
| |
− | | o-------o o-------o |
| |
− | | \ / \ / | | |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Cancellation >=========o
| |
− | | |
| |
− | | r r r |
| |
− | | o o o | | |
− | | | | | |
| |
− | | o o o o o |
| |
− | | / | \ / | |
| |
− | | o-------o o-------o |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | | | |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Domination >===========o
| |
− | | |
| |
− | | r r | | |
− | | o o |
| |
− | | | | |
| |
− | | o o o o |
| |
− | | / | \ | |
| |
− | | o-------o o-------o |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | | | |
− | | | | |
| |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Spike >================o
| |
− | | |
| |
− | | r r | | |
− | | o o |
| |
− | | | | |
| |
− | | o o |
| |
− | | / | |
| |
− | | o-------o o |
| |
− | | \ / | |
| |
− | | \ / | |
| |
− | | \ / | |
| |
− | | o o |
| |
− | | | | | | |
− | | | | |
| |
− | | | | |
| |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Cancellation >=========o
| |
− | | |
| |
− | | r r | | |
− | | o o |
| |
− | | | | |
| |
− | | o o |
| |
− | | / | |
| |
− | | o-------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | o |
| |
− | | | |
| |
− | | | |
| |
− | | | | | |
− | | q o---------------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< CAST "r" >=============o
| |
− | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | o o o o |
| |
− | | | | | | |
| |
− | | o o o o |
| |
− | | / | / | |
| |
− | | o-------o o-------o |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | r o---------------o---o r | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Cancellation >=========o
| |
− | | |
| |
− | | o o |
| |
− | | / | |
| |
− | | o-------o o-------o |
| |
− | | \ / \ / | | |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | r o---------------o---o r |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | q o-------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Emptiness & Spike >====o
| |
− | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | | | |
| |
− | | | | |
| |
− | | r o---------------o---o r | | |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | q o-------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p | | |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o==================================< Cancellation >=========o
| |
− | | |
| |
− | | r o-------o---o r |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / | | |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ | | |
− | | |
| |
− | o==================================< QED >==================o
| |
− | </pre>
| |
| | (40) | | | (40) |
| |} | | |} |