Line 905: |
Line 905: |
| |} | | |} |
| | | |
− | For the sake of simplicity in discussing this example, let's stick with the existential interpretation (<math>\operatorname{Ex}</math>) of logical graphs and their corresponding parse strings. Under <math>\operatorname{Ex}</math> the formal expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> translates into the vernacular expression <math>{}^{\backprime\backprime} p ~\operatorname{implies}~ q ~\operatorname{and}~ p ~\operatorname{implies}~ r {}^{\prime\prime},</math> in symbols, <math>(p \Rightarrow q) \land (p \Rightarrow r),</math> so this is the reading that we'll want to keep in mind for the present. | + | For the sake of simplicity in discussing this example, let's stick with the existential interpretation (<math>\operatorname{Ex}</math>) of logical graphs and their corresponding parse strings. Under <math>\operatorname{Ex}</math> the formal expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> translates into the vernacular expression <math>{}^{\backprime\backprime} p ~\operatorname{implies}~ q ~\operatorname{and}~ p ~\operatorname{implies}~ r {}^{\prime\prime},</math> in symbols, <math>(p \Rightarrow q) \land (p \Rightarrow r),</math> so this is the reading that we'll want to keep in mind for the present. Where brevity is required, we may refer to the propositional expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> under the name <math>f\!</math> by making use of the following definition: |
− | | |
− | Where brevity is required, we may refer to the propositional expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> under the name <math>f\!</math> by making use of the following definition: | |
| | | |
| {| align="center" cellpadding="10" | | {| align="center" cellpadding="10" |
Line 913: |
Line 911: |
| |} | | |} |
| | | |
− | Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact a couple of different ways to execute the picture. | + | Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact two different ways to execute the picture. |
| | | |
− | Figure 1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1 (<math>= \operatorname{true}</math>). In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance: Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate. (Note. In this Ascii version, I use [ ] for 0 and [ ` ` ` ] for 1.) | + | Figure 1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1, here interpreted as the logical value <math>\operatorname{true}.</math> In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance: Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate. (Note. In this Ascii version, I use [ ] for 0 and [ ` ` ` ] for 1.) |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
Line 961: |
Line 959: |
| |} | | |} |
| | | |
− | There are a number of standard ways in mathematics and statistics for talking about "the subset ''W'' of the domain ''X'' that gets painted with the value ''z'' by the indicator function ''f'' : ''X'' → '''B'''". The subset ''W'' ⊆ ''X'' is called by a variety of names in different settings, for example, the ''antecedent'', the ''fiber'', the ''inverse image'', the ''level set'', or the ''pre-image'' in ''X'' of ''z'' under ''f''. It is notated and defined as ''W'' = ''f''<sup>–1</sup>(''z''). Here, ''f''<sup>–1</sup> is called the ''converse relation'' or the ''inverse relation'' — it is not in general an inverse function — corresponding to the function ''f''. Whenever possible in simple examples, we use lower case letters for functions ''f'' : ''X'' → '''B''', and its is sometimes useful to employ capital letters for subsets of ''X'', if possible, in such a way that ''F'' is the fiber of 1 under ''f'', in other words, ''F'' = ''f''<sup>–1</sup>(1). | + | There are a number of standard ways in mathematics and statistics for talking about the subset <math>W\!</math> of the functional domain <math>X\!</math> that gets painted with the value <math>z \in \mathbb{B}</math> by the indicator function <math>f : X \to \mathbb{B}.</math> The region <math>W \subseteq X</math> is called by a variety of names in different settings, for example, the ''antecedent'', the ''fiber'', the ''inverse image'', the ''level set'', or the ''pre-image'' in <math>X\!</math> of <math>z\!</math> under <math>f.\!</math> It is notated and defined as <math>W = f^{-1}(z).\!</math> Here, <math>f^{-1}\!</math> is called the ''converse relation'' or the ''inverse relation'' — it is not in general an inverse function — corresponding to the function <math>f.\!</math> Whenever possible in simple examples, we use lower case letters for functions <math>f : X \to \mathbb{B},</math> and it is sometimes useful to employ capital letters for subsets of <math>X,\!</math> if possible, in such a way that <math>F\!</math> is the fiber of 1 under <math>f,\!</math> in other words, <math>F = f^{-1}(1).\!</math> |
| | | |
| The easiest way to see the sense of the venn diagram is to notice that the expression "(p (q))", read as "''p'' ⇒ ''q''", can also be read as "not ''p'' without ''q''". Its assertion effectively excludes any tincture of truth from the region of ''P'' that lies outside the region ''Q''. | | The easiest way to see the sense of the venn diagram is to notice that the expression "(p (q))", read as "''p'' ⇒ ''q''", can also be read as "not ''p'' without ''q''". Its assertion effectively excludes any tincture of truth from the region of ''P'' that lies outside the region ''Q''. |
Line 967: |
Line 965: |
| Likewise for the expression "(p (r))", read as "''p'' ⇒ ''r''", and also readable as "not ''p'' without ''r''". Asserting it effectively excludes any tincture of truth from the region of ''P'' that lies outside the region ''R''. | | Likewise for the expression "(p (r))", read as "''p'' ⇒ ''r''", and also readable as "not ''p'' without ''r''". Asserting it effectively excludes any tincture of truth from the region of ''P'' that lies outside the region ''R''. |
| | | |
− | Figure 2 shows the other standard way of drawing a venn diagram for such a proposition. In this ''punctured soap film'' style of picture — others may elect to give it the more dignified title of a ''logical quotient topology'' or some such thing — one goes on from the previous picture to collapse the fiber of 0 under ''X'' down to the point of vanishing utterly from the realm of active contemplation, thereby arriving at a degenre of picture like so: | + | Figure 2 shows the other standard way of drawing a venn diagram for such a proposition. In this ''punctured soap film'' style of picture — others may elect to give it the more dignified title of a ''logical quotient topology'' or some such thing — one goes on from the previous picture to collapse the fiber of 0 under ''X'' down to the point of vanishing utterly from the realm of active contemplation, thereby arriving at a degenre of picture like so: |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |