Changes

→‎Exemplary proofs: del unnec specs
Line 118: Line 118:  
====Peirce's law====
 
====Peirce's law====
   −
: ''Main article : [[Peirce's law]]
+
: ''Main article'' : [[Peirce's law]]
    
Peirce's law is commonly written in the following form:
 
Peirce's law is commonly written in the following form:
   −
<center>
+
{| align="center" cellpadding="10"
<p><math>((p \Rightarrow q) \Rightarrow p) \Rightarrow p</math></p>
+
| <math>((p \Rightarrow q) \Rightarrow p) \Rightarrow p</math>
</center>
+
|}
    
The existential graph representation of Peirce's law is shown in Figure&nbsp;12.
 
The existential graph representation of Peirce's law is shown in Figure&nbsp;12.
   −
{| align="center" border="0" cellpadding="10" cellspacing="0"
+
{| align="center" cellpadding="10"
 
| [[Image:PERS_Figure_12.jpg|500px]] || (12)
 
| [[Image:PERS_Figure_12.jpg|500px]] || (12)
 
|}
 
|}
Line 134: Line 134:  
A graphical proof of Peirce's law is shown in Figure&nbsp;13.
 
A graphical proof of Peirce's law is shown in Figure&nbsp;13.
   −
{| align="center" border="0" cellpadding="10" cellspacing="0"
+
{| align="center" cellpadding="10"
 
| [[Image:PERS_Figure_13.jpg|500px]] || (13)
 
| [[Image:PERS_Figure_13.jpg|500px]] || (13)
 
|}
 
|}
Line 142: Line 142:  
An illustrious example of a propositional theorem is the ''praeclarum theorema'', the ''admirable'', ''shining'', or ''splendid'' theorem of Leibniz.
 
An illustrious example of a propositional theorem is the ''praeclarum theorema'', the ''admirable'', ''shining'', or ''splendid'' theorem of Leibniz.
   −
{| align="center" cellpadding="8" width="90%"
+
{| align="center" cellpadding="10" width="90%"
 
|
 
|
 
<p>If ''a'' is ''b'' and ''d'' is ''c'', then ''ad'' will be ''bc''.</p>
 
<p>If ''a'' is ''b'' and ''d'' is ''c'', then ''ad'' will be ''bc''.</p>
12,080

edits