| Line 38: | Line 38: | 
|  | |} |  | |} | 
|  |  |  |  | 
| − | It is a fact that any old function that you might pick factors into a functional composition of two other functions, a surjective ("onto") function and an injective ("one-to-one") function, in the present example pictured below: | + | It is a fact that any old function that you might pick factors into a composition of two other functions, a surjective ("onto") function and an injective ("one-to-one") function, in the present example pictured below: | 
|  |  |  |  | 
| − | {| align="center" cellpadding="10" style="text-align:center; width:90%" | + | {| align="center" cellpadding="8" style="text-align:center" | 
| − | | | + | | [[Image:Factorization Function Example 2.jpg|500px]] | 
| − | <pre>
 | + | |- | 
| − | o---------------------------------------o
 | + | | <math>\text{Figure 2.  Factorization}~ f = g \circ h</math> | 
| − | |                                       | |  | 
| − | |   Source X  =  {1, 2, 3, 4,    5}    |
 |  | 
| − | |          |      o  o  o  o     o      |
 |  | 
| − | |      g  |       \ | /    \   /       |
 |  | 
| − | |          v        \|/      \ /        |
 |  | 
| − | |   Medium M  =  {   Q   ,    T   }     |
 |  | 
| − | |          |         |        |         |
 |  | 
| − | |      h  |         |        |         |
 |  | 
| − | |          v      o  o  o  o  o  o      |
 |  | 
| − | |   Target Y  =  {p, q, r, s, t, u}     |
 |  | 
| − | |                                       |
 |  | 
| − | o---------------------------------------o
 |  | 
| − | </pre> |  | 
|  | |} |  | |} | 
|  |  |  |  | 
| Line 66: | Line 53: | 
|  | X & = & \{ 1, 2, 3, 4, 5 \} |  | X & = & \{ 1, 2, 3, 4, 5 \} | 
|  | \\[4pt] |  | \\[4pt] | 
| − | M & = & \{ Q,T \} | + | M & = & \{ m, n \} | 
|  | \\[4pt] |  | \\[4pt] | 
|  | Y & = & \{ p, q, r, s, t, u \} |  | Y & = & \{ p, q, r, s, t, u \} |