Changes

→‎Note 1: markup
Line 15: Line 15:  
Picture an arbitrary function from a ''source'' or ''domain'' to a ''target'' or ''codomain''.  Here is one picture of an <math>f : X \to Y,</math> just about as generic as it needs to be:
 
Picture an arbitrary function from a ''source'' or ''domain'' to a ''target'' or ''codomain''.  Here is one picture of an <math>f : X \to Y,</math> just about as generic as it needs to be:
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 
<pre>
 
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
Line 27: Line 29:  
o---------------------------------------o
 
o---------------------------------------o
 
</pre>
 
</pre>
 +
|}
    
Now, it is a fact that any old function that you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example just like so:
 
Now, it is a fact that any old function that you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example just like so:
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 
<pre>
 
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
Line 45: Line 50:  
o---------------------------------------o
 
o---------------------------------------o
 
</pre>
 
</pre>
 +
|}
    
Writing the functional compositions <math>f = g \circ h</math> "on the right", as they say, we have the following data about the situation:
 
Writing the functional compositions <math>f = g \circ h</math> "on the right", as they say, we have the following data about the situation:
Line 113: Line 119:  
signs, like "=", written between ostensible nodes,
 
signs, like "=", written between ostensible nodes,
 
like "o", identify them into a single real node.
 
like "o", identify them into a single real node.
 +
</pre>
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
| Denotative Component of L  |
 
| Denotative Component of L  |
Line 139: Line 149:  
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
    +
<pre>
 
This depicts a situation where each of the three objects,
 
This depicts a situation where each of the three objects,
 
x_1, x_2, x_3, has a "proper name" that denotes it alone,
 
x_1, x_2, x_3, has a "proper name" that denotes it alone,
Line 182: Line 195:     
In this case, we factor the function f : O -> S
 
In this case, we factor the function f : O -> S
 +
</pre>
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 194: Line 211:  
|                                      |
 
|                                      |
 
o---------------------------------------o
 
o---------------------------------------o
 +
</pre>
 +
|}
    
into the composition g o h, where g : O -> M, and h : M -> S
 
into the composition g o h, where g : O -> M, and h : M -> S
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 212: Line 234:  
|                                      |
 
|                                      |
 
o---------------------------------------o
 
o---------------------------------------o
 +
</pre>
 +
|}
    +
<pre>
 
The factorization of an arbitrary function
 
The factorization of an arbitrary function
 
into a surjective ("onto") function followed
 
into a surjective ("onto") function followed
Line 240: Line 265:  
we get the augmented sign relation L', shown
 
we get the augmented sign relation L', shown
 
in the next vignette:
 
in the next vignette:
 +
</pre>
    +
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
| Denotative Component of L'  |
 
| Denotative Component of L'  |
Line 266: Line 295:  
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
    +
<pre>
 
This amounts to the creation of a hypostatic object x,
 
This amounts to the creation of a hypostatic object x,
 
which affords us a singular denotation for the sign y.
 
which affords us a singular denotation for the sign y.
12,080

edits