Changes

→‎Note 4: convert graphics
Line 262: Line 262:  
In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below:
 
In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below:
   −
{| align="center" cellspacing="20" style="text-align:center"
+
{| align="center" cellspacing="20"
 
| [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]]
 
| [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]]
 
|-
 
|-
Line 276: Line 276:  
The easy way to visualize the values of these graphical expressions is just to notice the following equivalents:
 
The easy way to visualize the values of these graphical expressions is just to notice the following equivalents:
   −
{| align="center" cellspacing="20" style="text-align:center; width:90%"
+
{| align="center" cellspacing="20"
 
| [[Image:Cactus Graph Lobe Rule.jpg|500px]]
 
| [[Image:Cactus Graph Lobe Rule.jpg|500px]]
 
|-
 
|-
|
+
| [[Image:Cactus Graph Spike Rule.jpg|500px]]
<pre>
  −
o-------------------------------------------------o
  −
|                                                |
  −
|                o                                |
  −
| e_1 e_2  e_k  |                                |
  −
|  o---o-...-o---o                                |
  −
|  \          /                                |
  −
|    \        /                                  |
  −
|    \      /                                  |
  −
|      \    /                                    |
  −
|      \  /                                    |
  −
|        \ /                      e_1 ... e_k    |
  −
|        @              =              @        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
|  (e_1, ..., e_k, ())  =        e_1 ... e_k    |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
    
Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''.
 
Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''.
   −
{| align="center" cellspacing="10"
+
{| align="center" cellspacing="20"
 
| [[Image:Venn Diagram PQ Difference Conj.jpg|500px]]
 
| [[Image:Venn Diagram PQ Difference Conj.jpg|500px]]
 
|}
 
|}
Line 308: Line 290:  
The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions::
 
The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions::
   −
{| align="center" cellspacing="10"
+
{| align="center" cellspacing="20"
 
|
 
|
 
<math>\begin{array}{rcccc}
 
<math>\begin{array}{rcccc}
12,080

edits