Changes

Line 3,656: Line 3,656:  
==Note 21==
 
==Note 21==
   −
<pre>
+
We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group.
We have seen a couple of groups, V_4 and S_3, represented in
  −
several different ways, and we have seen each of these types
  −
of representation presented in several different fashions.
  −
Let us look at one other stylistic variant for presenting
  −
a group representation that is often used, the so-called
  −
"matrix representation" of a group.
     −
Returning to the example of Sym(3), we first encountered
+
Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ a, b, c \}.\!</math>
this group in concrete form as a set of permutations or
  −
substitutions acting on a set of letters X = {a, b, c}.
  −
This set of permutations was displayed in Table 17-a,
  −
copies of which can be found here:
     −
http://stderr.org/pipermail/inquiry/2004-May/001419.html
+
<br>
http://forum.wolframscience.com/showthread.php?postid=1321#post1321
     −
These permutations were then converted to "relative form":
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
 +
|+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ a, b, c \}</math>
 +
|- style="background:#f0f0ff"
 +
| width="16%" | <math>\operatorname{e}</math>
 +
| width="16%" | <math>\operatorname{f}</math>
 +
| width="16%" | <math>\operatorname{g}</math>
 +
| width="16%" | <math>\operatorname{h}</math>
 +
| width="16%" | <math>\operatorname{i}</math>
 +
| width="16%" | <math>\operatorname{j}</math>
 +
|-
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
a & b & c
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
c & a & b
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
b & c & a
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
a & c & b
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
c & b & a
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
b & a & c
 +
\end{matrix}</math>
 +
|}
   −
  e  =  a:a + b:b + c:c
+
<br>
   −
  f  =  a:c + b:a + c:b
+
These permutations were then converted to relative form as logical sums of elementary relatives:
   −
  g = a:b + b:c + c:a
+
{| align="center" cellpadding="10" width="90%"
 
+
| align="center" |
  h = a:a + b:c + c:b
+
<math>\begin{matrix}
 
+
\operatorname{e}
  i = a:c + b:b + c:a
+
& = & a\!:\!a
 
+
& + & b\!:\!b
  j = a:b + b:a + c:c
+
& + & c\!:\!c
 +
\\[4pt]
 +
\operatorname{f}
 +
& = & a\!:\!c
 +
& + & b\!:\!a
 +
& + & c\!:\!b
 +
\\[4pt]
 +
\operatorname{g}
 +
& = & a\!:\!b
 +
& + & b\!:\!c
 +
& + & c\!:\!a
 +
\\[4pt]
 +
\operatorname{h}
 +
& = & a\!:\!a
 +
& + & b\!:\!c
 +
& + & c\!:\!b
 +
\\[4pt]
 +
\operatorname{i}
 +
& = & a\!:\!c
 +
& + & b\!:\!b
 +
& + & c\!:\!a
 +
\\[4pt]
 +
\operatorname{j}
 +
& = & a\!:\!b
 +
& + & b\!:\!a
 +
& + & c\!:\!c
 +
\end{matrix}</math>
 +
|}
    +
<pre>
 
From this relational representation of Sym {a, b, c} ~=~ S_3,
 
From this relational representation of Sym {a, b, c} ~=~ S_3,
 
one easily derives a "linear representation", regarding each
 
one easily derives a "linear representation", regarding each
12,080

edits