Line 3,656: |
Line 3,656: |
| ==Note 21== | | ==Note 21== |
| | | |
− | <pre>
| + | We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group. |
− | We have seen a couple of groups, V_4 and S_3, represented in | |
− | several different ways, and we have seen each of these types
| |
− | of representation presented in several different fashions.
| |
− | Let us look at one other stylistic variant for presenting | |
− | a group representation that is often used, the so-called | |
− | "matrix representation" of a group.
| |
| | | |
− | Returning to the example of Sym(3), we first encountered
| + | Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ a, b, c \}.\!</math> |
− | this group in concrete form as a set of permutations or
| |
− | substitutions acting on a set of letters X = {a, b, c}. | |
− | This set of permutations was displayed in Table 17-a,
| |
− | copies of which can be found here:
| |
| | | |
− | http://stderr.org/pipermail/inquiry/2004-May/001419.html
| + | <br> |
− | http://forum.wolframscience.com/showthread.php?postid=1321#post1321
| |
| | | |
− | These permutations were then converted to "relative form":
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| + | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ a, b, c \}</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="16%" | <math>\operatorname{e}</math> |
| + | | width="16%" | <math>\operatorname{f}</math> |
| + | | width="16%" | <math>\operatorname{g}</math> |
| + | | width="16%" | <math>\operatorname{h}</math> |
| + | | width="16%" | <math>\operatorname{i}</math> |
| + | | width="16%" | <math>\operatorname{j}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | a & b & c |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | c & a & b |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | b & c & a |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | a & c & b |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | c & b & a |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | a & b & c |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | b & a & c |
| + | \end{matrix}</math> |
| + | |} |
| | | |
− | e = a:a + b:b + c:c
| + | <br> |
| | | |
− | f = a:c + b:a + c:b
| + | These permutations were then converted to relative form as logical sums of elementary relatives: |
| | | |
− | g = a:b + b:c + c:a
| + | {| align="center" cellpadding="10" width="90%" |
− | | + | | align="center" | |
− | h = a:a + b:c + c:b
| + | <math>\begin{matrix} |
− | | + | \operatorname{e} |
− | i = a:c + b:b + c:a
| + | & = & a\!:\!a |
− | | + | & + & b\!:\!b |
− | j = a:b + b:a + c:c
| + | & + & c\!:\!c |
| + | \\[4pt] |
| + | \operatorname{f} |
| + | & = & a\!:\!c |
| + | & + & b\!:\!a |
| + | & + & c\!:\!b |
| + | \\[4pt] |
| + | \operatorname{g} |
| + | & = & a\!:\!b |
| + | & + & b\!:\!c |
| + | & + & c\!:\!a |
| + | \\[4pt] |
| + | \operatorname{h} |
| + | & = & a\!:\!a |
| + | & + & b\!:\!c |
| + | & + & c\!:\!b |
| + | \\[4pt] |
| + | \operatorname{i} |
| + | & = & a\!:\!c |
| + | & + & b\!:\!b |
| + | & + & c\!:\!a |
| + | \\[4pt] |
| + | \operatorname{j} |
| + | & = & a\!:\!b |
| + | & + & b\!:\!a |
| + | & + & c\!:\!c |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| + | <pre> |
| From this relational representation of Sym {a, b, c} ~=~ S_3, | | From this relational representation of Sym {a, b, c} ~=~ S_3, |
| one easily derives a "linear representation", regarding each | | one easily derives a "linear representation", regarding each |