Changes

→‎Note 4: markup
Line 608: Line 608:  
|}
 
|}
   −
<pre>
+
The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions::
This just amounts to a depiction of the points,
  −
truth-value assignments, or interpretations in
  −
EX = !P! x !Q! x d!P! x d!Q! that are indicated
  −
by the difference map Df : EX -> B, namely, the
  −
following six points or singular propositions:
     −
  1.   p  q  dp dq
+
{| align="center" cellpadding="6"
  2.   p  q  dp (dq)
+
|
  3.   p  q (dp) dq
+
<math>\begin{array}{rcccc}
  4.   p (q)(dp) dq
+
1. p & &  \operatorname{d}p  & \operatorname{d}q
  5. (p) q  dp (dq)
+
\\
  6. (p)(q) dp dq
+
2. p & &  \operatorname{d}p  & (\operatorname{d}q)
 +
\\
 +
3. p & q & (\operatorname{d}p) &  \operatorname{d}q
 +
\\
 +
4. p & (q) & (\operatorname{d}p) &  \operatorname{d}q
 +
\\
 +
5. & (p) &  \operatorname{d}p  & (\operatorname{d}q)
 +
\\
 +
6. & (p) & (q) & \operatorname{d}p  &  \operatorname{d}q
 +
\end{array}</math>
 +
|}
   −
By inspection, it is fairly easy to understand Df
+
The information borne by <math>\operatorname{D}f</math> should be clear enough from a survey of these six points &mdash; they tell you what you have do from each point of <math>X\!</math> in order to change the value borne by <math>f(p, q),\!</math> that is, the move you have to make in order to reach a point where the value of the proposition <math>f(p, q)\!</math> is different from what it is where you started.
as telling you what you have to do from each point
  −
of X in order to change the value borne by f<p, q>
  −
at the point in question, that is, in order to get
  −
to a point where the value of f<p, q> is different
  −
from what it is where you started.
  −
</pre>
      
==Note 5==
 
==Note 5==
12,080

edits