Changes

→‎Note 2: markup
Line 242: Line 242:  
|}
 
|}
   −
<pre>
+
A function like this has an abstract type and a concrete type. The abstract type is what we invoke when we write things like <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}</math> or <math>f : \mathbb{B}^2 \to \mathbb{B}.</math> The concrete type takes into account the qualitative dimensions or the "units" of the case, which can be explained as follows.
A function like this has an abstract type and a concrete type.
  −
The abstract type is what we invoke when we write things like
  −
f : B x B -> B or f : B^2 -> B.  The concrete type takes into
  −
account the qualitative dimensions or the "units" of the case,
  −
which can be explained as follows.
     −
  Let !P! be the set of two values {(p), p} = {not-p, p} ~=~ B
+
{| align="center" cellpadding="6" width="90%"
 +
| Let <math>P\!</math> be the set of values <math>\{ \texttt{(} p \texttt{)},~ p \} ~=~ \{ \operatorname{not}~ p,~ p \} ~\cong~ \mathbb{B}.</math>
 +
|-
 +
| Let <math>Q\!</math> be the set of values <math>\{ \texttt{(} q \texttt{)},~ q \} ~=~ \{ \operatorname{not}~ q,~ q \} ~\cong~ \mathbb{B}.</math>
 +
|}
   −
  Let !Q! be the set of two values {(q), q} = {not-q, q} ~=~ B
+
Then interpret the usual propositions about <math>p, q\!</math> as functions of the concrete type <math>f : P \times Q \to \mathbb{B}.</math>
 
  −
Then interpret the usual propositions about p, q
  −
as functions of concrete type f : !P! x !Q! -> B.
      +
<pre>
 
We are going to consider various "operators" on these functions.
 
We are going to consider various "operators" on these functions.
 
Here, an operator W is a function that takes one function f into
 
Here, an operator W is a function that takes one function f into
12,080

edits