Changes

Line 3,100: Line 3,100:  
Also, let <math>m\!</math> be such that
 
Also, let <math>m\!</math> be such that
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
A is a mover of A and B,
+
|
B is a mover of B and C,
+
<math>\begin{array}{l}
C is a mover of C and A.
+
A ~\text{is a mover of}~ A ~\text{and}~ B,
</pre>
+
\\
 +
B ~\text{is a mover of}~ B ~\text{and}~ C,
 +
\\
 +
C ~\text{is a mover of}~ C ~\text{and}~ A.
 +
\end{array}</math>
 +
|}
    
In sum:
 
In sum:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
m =
+
|
 
+
<math>
1 · (A:A)   1 · (A:B)   0 · (A:C) |
+
m ~=~
|                                    |
+
\begin{bmatrix}
0 · (B:A)   1 · (B:B)   1 · (B:C) |
+
1 \cdot (A:A) & 1 \cdot (A:B) & 0 \cdot (A:C)
|                                    |
+
\\
1 · (C:A)   0 · (C:B)   1 · (C:C) |
+
0 \cdot (B:A) & 1 \cdot (B:B) & 1 \cdot (B:C)
</pre>
+
\\
 +
1 \cdot (C:A) & 0 \cdot (C:B) & 1 \cdot (C:C)
 +
\end{bmatrix}
 +
</math>
 +
|}
    
For the sake of orientation and motivation, compare with Peirce's notation in CP&nbsp;3.329.
 
For the sake of orientation and motivation, compare with Peirce's notation in CP&nbsp;3.329.
12,080

edits