Changes

Line 3,860: Line 3,860:  
|}
 
|}
   −
<pre>
+
Then we rewrote these permutations &mdash; being functions <math>f : X \to X</math> they can also be recognized as being 2-adic relations <math>f \subseteq X \times X</math> &mdash; in ''relative form'', in effect, in the manner to which Peirce would have made us accustomed had he been given a relative half-a-chance:
Then we rewrote these permutations -- being functions f : X --> X
  −
they can also be recognized as being 2-adic relations f c X X --
  −
in "relative form", in effect, in the manner to which Peirce would
  −
have made us accostumed had he been given a relative half-a-chance:
     −
    e = A:A + B:B + C:C
+
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{matrix}
 +
\operatorname{e}
 +
& = & \operatorname{A}:\operatorname{A}
 +
& + & \operatorname{B}:\operatorname{B}
 +
& + & \operatorname{C}:\operatorname{C}
 +
\\[4pt]
 +
\operatorname{f}
 +
& = & \operatorname{A}:\operatorname{C}
 +
& + & \operatorname{B}:\operatorname{A}
 +
& + & \operatorname{C}:\operatorname{B}
 +
\\[4pt]
 +
\operatorname{g}
 +
& = & \operatorname{A}:\operatorname{B}
 +
& + & \operatorname{B}:\operatorname{C}
 +
& + & \operatorname{C}:\operatorname{A}
 +
\\[4pt]
 +
\operatorname{h}
 +
& = & \operatorname{A}:\operatorname{A}
 +
& + & \operatorname{B}:\operatorname{C}
 +
& + & \operatorname{C}:\operatorname{B}
 +
\\[4pt]
 +
\operatorname{i}
 +
& = & \operatorname{A}:\operatorname{C}
 +
& + & \operatorname{B}:\operatorname{B}
 +
& + & \operatorname{C}:\operatorname{A}
 +
\\[4pt]
 +
\operatorname{j}
 +
& = & \operatorname{A}:\operatorname{B}
 +
& + & \operatorname{B}:\operatorname{A}
 +
& + & \operatorname{C}:\operatorname{C}
 +
\end{matrix}</math>
 +
|}
   −
    f  =  A:C + B:A + C:B
+
These days one is much more likely to encounter the natural representation of <math>S_3\!</math> in the form of a ''linear representation'', that is, as a family of linear transformations that map the elements of a suitable vector space into each other, all of which would in turn usually be represented by a set of matrices like these:
 
  −
    g  =  A:B + B:C + C:A
  −
 
  −
    h  =  A:A + B:C + C:B
  −
 
  −
    i  =  A:C + B:B + C:A
  −
 
  −
    j  =  A:B + B:A + C:C
  −
 
  −
These days one is much more likely to encounter the natural representation
  −
of S_3 in the form of a "linear representation", that is, as a family of
  −
linear transformations that map the elements of a suitable vector space
  −
into each other, all of which would in turn usually be represented by
  −
a set of matrices like these:
      +
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<pre>
 
Table 2.  Matrix Representations of Permutations in Sym(3)
 
Table 2.  Matrix Representations of Permutations in Sym(3)
 
o---------o---------o---------o---------o---------o---------o
 
o---------o---------o---------o---------o---------o---------o
Line 3,896: Line 3,914:  
|        |        |        |        |        |        |
 
|        |        |        |        |        |        |
 
o---------o---------o---------o---------o---------o---------o
 
o---------o---------o---------o---------o---------o---------o
 +
</pre>
 +
|}
   −
The key to the mysteries of these matrices is revealed by noting that their
+
The key to the mysteries of these matrices is revealed by noting that their coefficient entries are arrayed and overlaid on a place-mat marked like so:
coefficient entries are arrayed and overlayed on a place mat marked like so:
     −
    | A:A A:B A:C |
+
{| align="center" cellpadding="6" width="90%"
    | B:A B:B B:C |
+
|
    | C:A C:B C:C |
+
<math>\begin{bmatrix}
 +
\mathrm{A}:\mathrm{A} & \mathrm{A}:\mathrm{B} & \mathrm{A}:\mathrm{C}
 +
\\
 +
\mathrm{B}:\mathrm{A} & \mathrm{B}:\mathrm{B} & \mathrm{B}:\mathrm{C}
 +
\\
 +
\mathrm{C}:\mathrm{A} & \mathrm{C}:\mathrm{B} & \mathrm{C}:\mathrm{C}
 +
\end{bmatrix}</math>
 +
|}
    
Of course, the place-settings of convenience at different symposia may vary.
 
Of course, the place-settings of convenience at different symposia may vary.
</pre>
      
==Note 24==
 
==Note 24==
12,080

edits