Changes

+ later notes
Line 3,558: Line 3,558:  
By the way, we will meet with the symmetric group <math>S_3\!</math> again when we return to take up the study of Peirce's early paper "On a Class of Multiple Algebras" (CP 3.324&ndash;327), and also his late unpublished work "The Simplest Mathematics" (1902) (CP 4.227&ndash;323), with particular reference to the section that treats of "Trichotomic Mathematics" (CP 4.307&ndash;323).
 
By the way, we will meet with the symmetric group <math>S_3\!</math> again when we return to take up the study of Peirce's early paper "On a Class of Multiple Algebras" (CP 3.324&ndash;327), and also his late unpublished work "The Simplest Mathematics" (1902) (CP 4.227&ndash;323), with particular reference to the section that treats of "Trichotomic Mathematics" (CP 4.307&ndash;323).
   −
==Work Area==
+
==Note 20==
 +
 
 +
<pre>
 +
By way of collecting a short-term pay-off for all the work --
 +
not to mention the peirce-spiration -- that we sweated out
 +
over the regular representations of the Klein 4-group V_4,
 +
let us write out as quickly as possible in "relative form"
 +
a minimal budget of representations of the symmetric group
 +
on three letters, S_3 = Sym(3).  After doing the usual bit
 +
of compare and contrast among these divers representations,
 +
we will have enough concrete material beneath our abstract
 +
belts to tackle a few of the presently obscur'd details of
 +
Peirce's early "Algebra + Logic" papers.
 +
 
 +
Table 1.  Permutations or Substitutions in Sym {A, B, C}
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |
 +
|        |        |        |        |        |        |
 +
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
 +
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
 +
|        |        |        |        |        |        |
 +
|  A B C  |  C A B  |  B C A  |  A C B  |  C B A  |  B A C  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
Writing this table in relative form generates
 +
the following "natural representation" of S_3.
 +
 
 +
    e  =  A:A + B:B + C:C
 +
 
 +
    f  =  A:C + B:A + C:B
 +
 
 +
    g  =  A:B + B:C + C:A
 +
 
 +
    h  =  A:A + B:C + C:B
 +
 
 +
    i  =  A:C + B:B + C:A
 +
 
 +
    j  =  A:B + B:A + C:C
 +
 
 +
I have without stopping to think about it written out this natural
 +
representation of S_3 in the style that comes most naturally to me,
 +
to wit, the "right" way, whereby an ordered pair configured as X:Y
 +
constitutes the turning of X into Y.  It is possible that the next
 +
time we check in with CSP that we will have to adjust our sense of
 +
direction, but that will be an easy enough bridge to cross when we
 +
come to it.
 +
</pre>
 +
 
 +
==Note 21==
 +
 
 +
<pre>
 +
To construct the regular representations of S_3,
 +
we pick up from the data of its operation table:
 +
 
 +
Table 1.  Symmetric Group S_3
 +
 
 +
|                        ^
 +
|                    e / \ e
 +
|                      /  \
 +
|                    /  e  \
 +
|                  f / \  / \ f
 +
|                  /  \ /  \
 +
|                  /  f  \  f  \
 +
|              g / \  / \  / \ g
 +
|                /  \ /  \ /  \
 +
|              /  g  \  g  \  g  \
 +
|            h / \  / \  / \  / \ h
 +
|            /  \ /  \ /  \ /  \
 +
|            /  h  \  e  \  e  \  h  \
 +
|        i / \  / \  / \  / \  / \ i
 +
|          /  \ /  \ /  \ /  \ /  \
 +
|        /  i  \  i  \  f  \  j  \  i  \
 +
|      j / \  / \  / \  / \  / \  / \ j
 +
|      /  \ /  \ /  \ /  \ /  \ /  \
 +
|      (  j  \  j  \  j  \  i  \  h  \  j  )
 +
|      \  / \  / \  / \  / \  / \  /
 +
|        \ /  \ /  \ /  \ /  \ /  \ /
 +
|        \  h  \  h  \  e  \  j  \  i  /
 +
|          \  / \  / \  / \  / \  /
 +
|          \ /  \ /  \ /  \ /  \ /
 +
|            \  i  \  g  \  f  \  h  /
 +
|            \  / \  / \  / \  /
 +
|              \ /  \ /  \ /  \ /
 +
|              \  f  \  e  \  g  /
 +
|                \  / \  / \  /
 +
|                \ /  \ /  \ /
 +
|                  \  g  \  f  /
 +
|                  \  / \  /
 +
|                    \ /  \ /
 +
|                    \  e  /
 +
|                      \  /
 +
|                      \ /
 +
|                        v
 +
 
 +
Just by way of staying clear about what we are doing,
 +
let's return to the recipe that we worked out before:
 +
 
 +
It is part of the definition of a group that the 3-adic
 +
relation L c G^3 is actually a function L : G x G -> G.
 +
It is from this functional perspective that we can see
 +
an easy way to derive the two regular representations.
 +
 
 +
Since we have a function of the type L : G x G -> G,
 +
we can define a couple of substitution operators:
 +
 
 +
1.  Sub(x, <_, y>) puts any specified x into
 +
    the empty slot of the rheme <_, y>, with
 +
    the effect of producing the saturated
 +
    rheme <x, y> that evaluates to x·y.
 +
 
 +
2.  Sub(x, <y, _>) puts any specified x into
 +
    the empty slot of the rheme <y, >, with
 +
    the effect of producing the saturated
 +
    rheme <y, x> that evaluates to y·x.
 +
 
 +
In (1), we consider the effects of each x in its
 +
practical bearing on contexts of the form <_, y>,
 +
as y ranges over G, and the effects are such that
 +
x takes <_, y> into x·y, for y in G, all of which
 +
is summarily notated as x = {(y : x·y) : y in G}.
 +
The pairs (y : x·y) can be found by picking an x
 +
from the left margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run along the right margin.  This produces
 +
the regular ante-representation of S_3, like so:
 +
 
 +
e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
 +
 
 +
f  =  e:f  +  f:g  +  g:e  +  h:j  +  i:h  +  j:i
 +
 
 +
g  =  e:g  +  f:e  +  g:f  +  h:i  +  i:j  +  j:h
 +
 
 +
h  =  e:h  +  f:i  +  g:j  +  h:e  +  i:f  +  j:g
 +
 
 +
i  =  e:i  +  f:j  +  g:h  +  h:g  +  i:e  +  j:f
 +
 
 +
j  =  e:j  +  f:h  +  g:i  +  h:f  +  i:g  +  j:e
 +
 
 +
In (2), we consider the effects of each x in its
 +
practical bearing on contexts of the form <y, _>,
 +
as y ranges over G, and the effects are such that
 +
x takes <y, _> into y·x, for y in G, all of which
 +
is summarily notated as x = {(y : y·x) : y in G}.
 +
The pairs (y : y·x) can be found by picking an x
 +
on the right margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run along the left margin.  This generates
 +
the regular post-representation of S_3, like so:
 +
 
 +
e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
 +
 
 +
f  =  e:f  +  f:g  +  g:e  +  h:i  +  i:j  +  j:h
 +
 
 +
g  =  e:g  +  f:e  +  g:f  +  h:j  +  i:h  +  j:i
 +
 
 +
h  =  e:h  +  f:j  +  g:i  +  h:e  +  i:g  +  j:f
 +
 
 +
i  =  e:i  +  f:h  +  g:j  +  h:f  +  i:e  +  j:g
 +
 
 +
j  =  e:j  +  f:i  +  g:h  +  h:g  +  i:f  +  j:e
 +
 
 +
If the ante-rep looks different from the post-rep,
 +
it is just as it should be, as S_3 is non-abelian
 +
(non-commutative), and so the two representations
 +
differ in the details of their practical effects,
 +
though, of course, being representations of the
 +
same abstract group, they must be isomorphic.
 +
</pre>
 +
 
 +
==Note 22==
    
<pre>
 
<pre>
| Consider what effects that might 'conceivably'
+
| the way of heaven and earth
| have practical bearings you 'conceive' the
+
| is to be long continued
| objects of your 'conception' to have.  Then,
+
| in their operation
| your 'conception' of those effects is the
+
| without stopping
| whole of your 'conception' of the object.
   
|
 
|
| Charles Sanders Peirce,
+
| i ching, hexagram 32
| "Maxim of Pragmaticism", CP 5.438.
+
 
 +
You may be wondering what happened to the announced subject
 +
of "Differential Logic", and if you think that we have been
 +
taking a slight "excursion" -- to use my favorite euphemism
 +
for "digression" -- my reply to the charge of a scenic rout
 +
would need to be both "yes and no".  What happened was this.
 +
At the sign-post marked by Sigil 7, we made the observation
 +
that the shift operators E_ij form a transformation group
 +
that acts on the propositions of the form f : B^2 -> B.
 +
Now group theory is a very attractive subject, but it
 +
did not really have the effect of drawing us so far
 +
off our initial course as you may at first think.
 +
For one thing, groups, in particular, the groups
 +
that have come to be named after the Norwegian
 +
mathematician Marius Sophus Lie, have turned
 +
out to be of critical utility in the solution
 +
of differential equations.  For another thing,
 +
group operations afford us examples of triadic
 +
relations that have been extremely well-studied
 +
over the years, and this provides us with quite
 +
a bit of guidance in the study of sign relations,
 +
another class of triadic relations of significance
 +
for logical studies, in our brief acquaintance with
 +
which we have scarcely even started to break the ice.
 +
Finally, I could hardly avoid taking up the connection
 +
between group representations, a very generic class of
 +
logical models, and the all-important pragmatic maxim.
 +
 
 +
Biographical Data for Marius Sophus Lie (1842-1899):
 +
 
 +
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lie.html
 +
</pre>
 +
 
 +
==Note 23==
 +
 
 +
<pre>
 +
| Bein' on the twenty-third of June,
 +
|      As I sat weaving all at my loom,
 +
| Bein' on the twenty-third of June,
 +
|      As I sat weaving all at my loom,
 +
| I heard a thrush, singing on yon bush,
 +
|      And the song she sang was The Jug of Punch.
 +
 
 +
We've seen a couple of groups, V_4 and S_3, represented in various ways, and
 +
we've seen their representations presented in a variety of different manners.
 +
Let us look at one other stylistic variant for presenting a representation
 +
that is frequently seen, the so-called "matrix representation" of a group.
   −
By way of collecting a shot-term pay-off for all the work --
+
Recalling the manner of our acquaintance with the symmetric group S_3,
not to mention the peirce-spiration -- that we sweated out
+
we began with the "bigraph" (bipartite graph) picture of its natural
over the regular representations of V_4 and S_3
+
representation as the set of all permutations or substitutions on
 +
the set X = {A, B, C}.
   −
Table 2.  Permutations or Substitutions in Sym_{A, B, C}
+
Table 1.  Permutations or Substitutions in Sym {A, B, C}
 
o---------o---------o---------o---------o---------o---------o
 
o---------o---------o---------o---------o---------o---------o
 
|        |        |        |        |        |        |
 
|        |        |        |        |        |        |
Line 3,590: Line 3,811:  
o---------o---------o---------o---------o---------o---------o
 
o---------o---------o---------o---------o---------o---------o
   −
problem about writing:
+
Then we rewrote these permutations -- being functions f : X --> X
 +
they can also be recognized as being 2-adic relations f c X  x  X --
 +
in "relative form", in effect, in the manner to which Peirce would
 +
have made us accostumed had he been given a relative half-a-chance:
 +
 
 +
    e  =  A:A + B:B + C:C
 +
 
 +
    f  =  A:C + B:A + C:B
 +
 
 +
    g  =  A:B + B:C + C:A
 +
 
 +
    h  =  A:A + B:C + C:B
 +
 
 +
    i  =  A:C + B:B + C:A
 +
 
 +
    j  =  A:B + B:A + C:C
 +
 
 +
These days one is much more likely to encounter the natural representation
 +
of S_3 in the form of a "linear representation", that is, as a family of
 +
linear transformations that map the elements of a suitable vector space
 +
into each other, all of which would in turn usually be represented by
 +
a set of matrices like these:
 +
 
 +
Table 2.  Matrix Representations of Permutations in Sym(3)
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  1 0 0  |  0 0 1  |  0 1 0  |  1 0 0  |  0 0 1  |  0 1 0  |
 +
|  0 1 0  |  1 0 0  |  0 0 1  |  0 0 1  |  0 1 0  |  1 0 0  |
 +
|  0 0 1  |  0 1 0  |  1 0 0  |  0 1 0  |  1 0 0  |  0 0 1  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
The key to the mysteries of these matrices is revealed by noting that their
 +
coefficient entries are arrayed and overlayed on a place mat marked like so:
 +
 
 +
    | A:A  A:B  A:C |
 +
    | B:A  B:B  B:C |
 +
    | C:A  C:B  C:C |
 +
 
 +
Of course, the place-settings of convenience at different symposia may vary.
 +
</pre>
 +
 
 +
==Note 24==
 +
 
 +
<pre>
 +
| In the beginning was the three-pointed star,
 +
| One smile of light across the empty face;
 +
| One bough of bone across the rooting air,
 +
| The substance forked that marrowed the first sun;
 +
| And, burning ciphers on the round of space,
 +
| Heaven and hell mixed as they spun.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 1
 +
 
 +
I'm afrayed that this thread is just bound to keep
 +
encountering its manifold of tensuous distractions,
 +
but I'd like to try and return now to the topic of
 +
inquiry, espectrally viewed in differential aspect.
 +
 
 +
Here's one picture of how it begins,
 +
one angle on the point of departure:
 +
 
 +
o-----------------------------------------------------------o
 +
|                                                          |
 +
|                                                          |
 +
|                      o-------------o                      |
 +
|                    /              \                    |
 +
|                    /                \                    |
 +
|                  /                  \                  |
 +
|                  /                    \                  |
 +
|                /                      \                |
 +
|                o                        o                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|                |      Observation      |                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|            o--o----------o  o----------o--o            |
 +
|            /    \          \ /          /    \            |
 +
|          /      \  d_I ^  o  ^ d_E  /      \          |
 +
|          /        \      \/ \/      /        \          |
 +
|        /          \      /\ /\      /          \        |
 +
|        /            \    /  @  \    /            \        |
 +
|      o              o--o---|---o--o              o      |
 +
|      |                |  |  |                |      |
 +
|      |                |  v  |                |      |
 +
|      |  Expectation  |  d_O  |    Intention    |      |
 +
|      |                |      |                |      |
 +
|      |                |      |                |      |
 +
|      o                o      o                o      |
 +
|        \                \    /                /        |
 +
|        \                \  /                /        |
 +
|          \                \ /                /          |
 +
|          \                o                /          |
 +
|            \              / \              /            |
 +
|            o-------------o  o-------------o            |
 +
|                                                          |
 +
|                                                          |
 +
o-----------------------------------------------------------o
 +
 
 +
From what we must assume was a state of "Unconscious Nirvana" (UN),
 +
since we do not acutely become conscious until after we are exiled
 +
from that garden of our blissful innocence, where our Expectations,
 +
our Intentions, our Observations all subsist in a state of perfect
 +
harmony, one with every barely perceived other, something intrudes
 +
on that scene of paradise to knock us out of that blessed isle and
 +
to trouble our countenance forever after at the retrospect thereof.
 +
 
 +
The least disturbance, it being provident and prudent both to take
 +
that first up, will arise in just one of three ways, in accord with
 +
the mode of discord that importunes on our equanimity, whether it is
 +
Expectation, Intention, Observation that incipiently incites the riot,
 +
departing as it will from congruence with the other two modes of being.
 +
 
 +
In short, we cross just one of the three lines that border on the center,
 +
or perhaps it is better to say that the objective situation transits one
 +
of the chordal bounds of harmony, for the moment marked as d_E, d_I, d_O
 +
to note the fact one's Expectation, Intention, Observation, respectively,
 +
is the mode that we duly indite as the one that's sounding the sour note.
 +
 
 +
A difference between Expectation and Observation is experienced
 +
as a "Surprise", a phenomenon that cries out for an Explanation.
 +
 
 +
A discrepancy between Intention and Observation is experienced
 +
as a "Problem", of the species that calls for a Plan of Action.
 +
 
 +
I can remember that I once thought up what I thought up an apt
 +
name for a gap between Expectation and Intention, but I cannot
 +
recall what it was, nor yet find the notes where I recorded it.
 +
 
 +
At any rate, the modes of experiencing a surprising phenomenon
 +
or a problematic situation, as described just now, are already
 +
complex modalities, and will need to be analyzed further if we
 +
want to relate them to the minimal changes d_E, d_I, d_O.  Let
 +
me think about that for a little while and see what transpires.
 +
</pre>
 +
 
 +
==Note 25==
 +
 
 +
<pre>
 +
| In the beginning was the pale signature,
 +
| Three-syllabled and starry as the smile;
 +
| And after came the imprints on the water,
 +
| Stamp of the minted face upon the moon;
 +
| The blood that touched the crosstree and the grail
 +
| Touched the first cloud and left a sign.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 2
 +
</pre>
 +
 
 +
==Note 26==
 +
 
 +
<pre>
 +
| In the beginning was the mounting fire
 +
| That set alight the weathers from a spark,
 +
| A three-eyed, red-eyed spark, blunt as a flower;
 +
| Life rose and spouted from the rolling seas,
 +
| Burst in the roots, pumped from the earth and rock
 +
| The secret oils that drive the grass.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 3
 +
</pre>
 +
 
 +
==Work Area==
 +
 
 +
<pre>
 +
problem about writing
    
   e  =  e:e  +  f:f  +  g:g  +  h:h
 
   e  =  e:e  +  f:f  +  g:g  +  h:h
12,080

edits