Line 24: |
Line 24: |
| Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries. | | Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries. |
| | | |
| + | <br> |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%" |
| |+ Table 1. Logical Boundaries and Their Complements | | |+ Table 1. Logical Boundaries and Their Complements |
Line 53: |
Line 54: |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| |- | | |- |
− | | width="20%" | <math>f_{104}</math> | + | | width="20%" | <math>f_{104}\!</math> |
− | | width="20%" | <math>f_{01101000}</math> | + | | width="20%" | <math>f_{01101000}\!</math> |
| | width="20%" | 0 1 1 0 1 0 0 0 | | | width="20%" | 0 1 1 0 1 0 0 0 |
− | | width="20%" | <math>( p , q , r )</math> | + | | width="20%" | <math>( p , q , r )\!</math> |
| |- | | |- |
− | | <math>f_{148}</math> | + | | <math>f_{148}\!</math> |
− | | <math>f_{10010100}</math> | + | | <math>f_{10010100}\!</math> |
| | 1 0 0 1 0 1 0 0 | | | 1 0 0 1 0 1 0 0 |
− | | <math>( p , q , (r))</math> | + | | <math>( p , q , (r))\!</math> |
| |- | | |- |
− | | <math>f_{146}</math> | + | | <math>f_{146}\!</math> |
− | | <math>f_{10010010}</math> | + | | <math>f_{10010010}\!</math> |
| | 1 0 0 1 0 0 1 0 | | | 1 0 0 1 0 0 1 0 |
− | | <math>( p , (q), r )</math> | + | | <math>( p , (q), r )\!</math> |
| |- | | |- |
− | | <math>f_{97}</math> | + | | <math>f_{97}\!</math> |
− | | <math>f_{01100001}</math> | + | | <math>f_{01100001}\!</math> |
| | 0 1 1 0 0 0 0 1 | | | 0 1 1 0 0 0 0 1 |
− | | <math>( p , (q), (r))</math> | + | | <math>( p , (q), (r))\!</math> |
| |- | | |- |
− | | <math>f_{134}</math> | + | | <math>f_{134}\!</math> |
− | | <math>f_{10000110}</math> | + | | <math>f_{10000110}\!</math> |
| | 1 0 0 0 0 1 1 0 | | | 1 0 0 0 0 1 1 0 |
− | | <math>((p), q , r )</math> | + | | <math>((p), q , r )\!</math> |
| |- | | |- |
− | | <math>f_{73}</math> | + | | <math>f_{73}\!</math> |
− | | <math>f_{01001001}</math> | + | | <math>f_{01001001}\!</math> |
| | 0 1 0 0 1 0 0 1 | | | 0 1 0 0 1 0 0 1 |
− | | <math>((p), q , (r))</math> | + | | <math>((p), q , (r))\!</math> |
| |- | | |- |
− | | <math>f_{41}</math> | + | | <math>f_{41}\!</math> |
− | | <math>f_{00101001}</math> | + | | <math>f_{00101001}\!</math> |
| | 0 0 1 0 1 0 0 1 | | | 0 0 1 0 1 0 0 1 |
− | | <math>((p), (q), r )</math> | + | | <math>((p), (q), r )\!</math> |
| |- | | |- |
− | | <math>f_{22}</math> | + | | <math>f_{22}\!</math> |
− | | <math>f_{00010110}</math> | + | | <math>f_{00010110}\!</math> |
| | 0 0 0 1 0 1 1 0 | | | 0 0 0 1 0 1 1 0 |
− | | <math>((p), (q), (r))</math> | + | | <math>((p), (q), (r))\!</math> |
| |} | | |} |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| |- | | |- |
− | | width="20%" | <math>f_{233}</math> | + | | width="20%" | <math>f_{233}\!</math> |
− | | width="20%" | <math>f_{11101001}</math> | + | | width="20%" | <math>f_{11101001}\!</math> |
| | width="20%" | 1 1 1 0 1 0 0 1 | | | width="20%" | 1 1 1 0 1 0 0 1 |
− | | width="20%" | <math>(((p), (q), (r)))</math> | + | | width="20%" | <math>(((p), (q), (r)))\!</math> |
| |- | | |- |
− | | <math>f_{214}</math> | + | | <math>f_{214}\!</math> |
− | | <math>f_{11010110}</math> | + | | <math>f_{11010110}\!</math> |
| | 1 1 0 1 0 1 1 0 | | | 1 1 0 1 0 1 1 0 |
− | | <math>(((p), (q), r ))</math> | + | | <math>(((p), (q), r ))\!</math> |
| |- | | |- |
− | | <math>f_{182}</math> | + | | <math>f_{182}\!</math> |
− | | <math>f_{10110110}</math> | + | | <math>f_{10110110}\!</math> |
| | 1 0 1 1 0 1 1 0 | | | 1 0 1 1 0 1 1 0 |
− | | <math>(((p), q , (r)))</math> | + | | <math>(((p), q , (r)))\!</math> |
| |- | | |- |
− | | <math>f_{121}</math> | + | | <math>f_{121}\!</math> |
− | | <math>f_{01111001}</math> | + | | <math>f_{01111001}\!</math> |
| | 0 1 1 1 1 0 0 1 | | | 0 1 1 1 1 0 0 1 |
− | | <math>(((p), q , r ))</math> | + | | <math>(((p), q , r ))\!</math> |
| |- | | |- |
− | | <math>f_{158}</math> | + | | <math>f_{158}\!</math> |
− | | <math>f_{10011110}</math> | + | | <math>f_{10011110}\!</math> |
| | 1 0 0 1 1 1 1 0 | | | 1 0 0 1 1 1 1 0 |
− | | <math>(( p , (q), (r)))</math> | + | | <math>(( p , (q), (r)))\!</math> |
| |- | | |- |
− | | <math>f_{109}</math> | + | | <math>f_{109}\!</math> |
− | | <math>f_{01101101}</math> | + | | <math>f_{01101101}\!</math> |
| | 0 1 1 0 1 1 0 1 | | | 0 1 1 0 1 1 0 1 |
− | | <math>(( p , (q), r ))</math> | + | | <math>(( p , (q), r ))\!</math> |
| |- | | |- |
− | | <math>f_{107}</math> | + | | <math>f_{107}\!</math> |
− | | <math>f_{01101011}</math> | + | | <math>f_{01101011}\!</math> |
| | 0 1 1 0 1 0 1 1 | | | 0 1 1 0 1 0 1 1 |
− | | <math>(( p , q , (r)))</math> | + | | <math>(( p , q , (r)))\!</math> |
| |- | | |- |
− | | <math>f_{151}</math> | + | | <math>f_{151}\!</math> |
− | | <math>f_{10010111}</math> | + | | <math>f_{10010111}\!</math> |
| | 1 0 0 1 0 1 1 1 | | | 1 0 0 1 0 1 1 1 |
− | | <math>(( p , q , r ))</math> | + | | <math>(( p , q , r ))\!</math> |
| |} | | |} |
| <br> | | <br> |