| Line 24: | 
Line 24: | 
|   | Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.  |   | Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.  | 
|   |  |   |  | 
|   | + | <br>  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%"  | 
|   | |+ Table 1.  Logical Boundaries and Their Complements  |   | |+ Table 1.  Logical Boundaries and Their Complements  | 
| Line 53: | 
Line 54: | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  | 
|   | |-  |   | |-  | 
| − | | width="20%" | <math>f_{104}</math>  | + | | width="20%" | <math>f_{104}\!</math>  | 
| − | | width="20%" | <math>f_{01101000}</math>  | + | | width="20%" | <math>f_{01101000}\!</math>  | 
|   | | width="20%" | 0 1 1 0 1 0 0 0  |   | | width="20%" | 0 1 1 0 1 0 0 0  | 
| − | | width="20%" | <math>( p , q , r )</math>  | + | | width="20%" | <math>( p , q , r )\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{148}</math>  | + | | <math>f_{148}\!</math>  | 
| − | | <math>f_{10010100}</math>  | + | | <math>f_{10010100}\!</math>  | 
|   | | 1 0 0 1 0 1 0 0  |   | | 1 0 0 1 0 1 0 0  | 
| − | | <math>( p , q , (r))</math>  | + | | <math>( p , q , (r))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{146}</math>  | + | | <math>f_{146}\!</math>  | 
| − | | <math>f_{10010010}</math>  | + | | <math>f_{10010010}\!</math>  | 
|   | | 1 0 0 1 0 0 1 0  |   | | 1 0 0 1 0 0 1 0  | 
| − | | <math>( p , (q), r )</math>  | + | | <math>( p , (q), r )\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{97}</math>  | + | | <math>f_{97}\!</math>  | 
| − | | <math>f_{01100001}</math>  | + | | <math>f_{01100001}\!</math>  | 
|   | | 0 1 1 0 0 0 0 1  |   | | 0 1 1 0 0 0 0 1  | 
| − | | <math>( p , (q), (r))</math>  | + | | <math>( p , (q), (r))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{134}</math>  | + | | <math>f_{134}\!</math>  | 
| − | | <math>f_{10000110}</math>  | + | | <math>f_{10000110}\!</math>  | 
|   | | 1 0 0 0 0 1 1 0  |   | | 1 0 0 0 0 1 1 0  | 
| − | | <math>((p), q , r )</math>  | + | | <math>((p), q , r )\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{73}</math>  | + | | <math>f_{73}\!</math>  | 
| − | | <math>f_{01001001}</math>  | + | | <math>f_{01001001}\!</math>  | 
|   | | 0 1 0 0 1 0 0 1  |   | | 0 1 0 0 1 0 0 1  | 
| − | | <math>((p), q , (r))</math>  | + | | <math>((p), q , (r))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{41}</math>  | + | | <math>f_{41}\!</math>  | 
| − | | <math>f_{00101001}</math>  | + | | <math>f_{00101001}\!</math>  | 
|   | | 0 0 1 0 1 0 0 1  |   | | 0 0 1 0 1 0 0 1  | 
| − | | <math>((p), (q), r )</math>  | + | | <math>((p), (q), r )\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{22}</math>  | + | | <math>f_{22}\!</math>  | 
| − | | <math>f_{00010110}</math>  | + | | <math>f_{00010110}\!</math>  | 
|   | | 0 0 0 1 0 1 1 0  |   | | 0 0 0 1 0 1 1 0  | 
| − | | <math>((p), (q), (r))</math>  | + | | <math>((p), (q), (r))\!</math>  | 
|   | |}  |   | |}  | 
|   | {|  align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  |   | {|  align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  | 
|   | |-  |   | |-  | 
| − | | width="20%" | <math>f_{233}</math>  | + | | width="20%" | <math>f_{233}\!</math>  | 
| − | | width="20%" | <math>f_{11101001}</math>  | + | | width="20%" | <math>f_{11101001}\!</math>  | 
|   | | width="20%" | 1 1 1 0 1 0 0 1  |   | | width="20%" | 1 1 1 0 1 0 0 1  | 
| − | | width="20%" | <math>(((p), (q), (r)))</math>  | + | | width="20%" | <math>(((p), (q), (r)))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{214}</math>  | + | | <math>f_{214}\!</math>  | 
| − | | <math>f_{11010110}</math>  | + | | <math>f_{11010110}\!</math>  | 
|   | | 1 1 0 1 0 1 1 0  |   | | 1 1 0 1 0 1 1 0  | 
| − | | <math>(((p), (q), r ))</math>  | + | | <math>(((p), (q), r ))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{182}</math>  | + | | <math>f_{182}\!</math>  | 
| − | | <math>f_{10110110}</math>  | + | | <math>f_{10110110}\!</math>  | 
|   | | 1 0 1 1 0 1 1 0  |   | | 1 0 1 1 0 1 1 0  | 
| − | | <math>(((p), q , (r)))</math>  | + | | <math>(((p), q , (r)))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{121}</math>  | + | | <math>f_{121}\!</math>  | 
| − | | <math>f_{01111001}</math>  | + | | <math>f_{01111001}\!</math>  | 
|   | | 0 1 1 1 1 0 0 1  |   | | 0 1 1 1 1 0 0 1  | 
| − | | <math>(((p), q , r ))</math>  | + | | <math>(((p), q , r ))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{158}</math>  | + | | <math>f_{158}\!</math>  | 
| − | | <math>f_{10011110}</math>  | + | | <math>f_{10011110}\!</math>  | 
|   | | 1 0 0 1 1 1 1 0  |   | | 1 0 0 1 1 1 1 0  | 
| − | | <math>(( p , (q), (r)))</math>  | + | | <math>(( p , (q), (r)))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{109}</math>  | + | | <math>f_{109}\!</math>  | 
| − | | <math>f_{01101101}</math>  | + | | <math>f_{01101101}\!</math>  | 
|   | | 0 1 1 0 1 1 0 1  |   | | 0 1 1 0 1 1 0 1  | 
| − | | <math>(( p , (q), r ))</math>  | + | | <math>(( p , (q), r ))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{107}</math>  | + | | <math>f_{107}\!</math>  | 
| − | | <math>f_{01101011}</math>  | + | | <math>f_{01101011}\!</math>  | 
|   | | 0 1 1 0 1 0 1 1  |   | | 0 1 1 0 1 0 1 1  | 
| − | | <math>(( p , q , (r)))</math>  | + | | <math>(( p , q , (r)))\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>f_{151}</math>  | + | | <math>f_{151}\!</math>  | 
| − | | <math>f_{10010111}</math>  | + | | <math>f_{10010111}\!</math>  | 
|   | | 1 0 0 1 0 1 1 1  |   | | 1 0 0 1 0 1 1 1  | 
| − | | <math>(( p , q , r ))</math>  | + | | <math>(( p , q , r ))\!</math>  | 
|   | |}  |   | |}  | 
|   | <br>  |   | <br>  |