Changes

Line 5,658: Line 5,658:  
|}
 
|}
   −
But doing the same thing for the compound relative term <math>(\mathit{s}^\mathit{l})^\mathrm{w}\!</math> is less immediate, the hang-up being that we have yet to define the case of logical involution that raises a 2-adic relative term to the power of a 2-adic relative term.
+
On the other hand, translating the compound relative term <math>(\mathit{s}^\mathit{l})^\mathrm{w}\!</math> into a set-theoretic equivalent is less immediate, the hang-up being that we have yet to define the case of logical involution that raises a 2-adic relative term to the power of a 2-adic relative term.  As a result, it looks easier to proceed through the matrix representation, drawing once again on the inspection of a concrete example.
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
Line 5,664: Line 5,664:  
<math>\begin{array}{*{15}{c}}
 
<math>\begin{array}{*{15}{c}}
 
X & = & \{ & a, & b, & c, & d, & e, & f, & g, & h, & i\ & \}
 
X & = & \{ & a, & b, & c, & d, & e, & f, & g, & h, & i\ & \}
\\[6pt]
  −
W & = & \{ & d, & f\ & \}
   
\\[6pt]
 
\\[6pt]
 
L & = & \{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!e, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \}
 
L & = & \{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!e, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \}
Line 5,677: Line 5,675:  
<pre>
 
<pre>
 
a  b  c  d  e  f  g  h  i     
 
a  b  c  d  e  f  g  h  i     
o  o  o  o  o  o  o  o  o  X
  −
            |      |               
  −
            |      |              W,
  −
            |      |               
   
o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  X
 
  \  \ /  / \  |  / \  \ /  /     
 
  \  \ /  / \  |  / \  \ /  /     
12,080

edits