Changes

Line 5,626: Line 5,626:  
===Commentary Note 12.3===
 
===Commentary Note 12.3===
   −
Peirce next considers a pair of compound involutions, stating an equation between them that is analogous to one of the usual laws of exponents in ordinary arithmetic, namely, <math>(a^b)^c = a^{bc}.\!</math>
+
Peirce next considers a pair of compound involutions, stating an equation between them that is analogous to one of the laws of exponents in ordinary arithmetic, namely, the law that states <math>(a^b)^c = a^{bc}.\!</math>
    
{| align="center" cellspacing="6" width="90%" <!--QUOTE-->
 
{| align="center" cellspacing="6" width="90%" <!--QUOTE-->
Line 5,652: Line 5,652:  
|}
 
|}
   −
Converting the relative term <math>\mathit{s}^{(\mathit{l}\mathrm{w})}\!</math> into its set-theoretic equivalent is fairly immediate:
+
Articulating the compound relative term <math>\mathit{s}^{(\mathit{l}\mathrm{w})}\!</math> in set-theoretic terms is fairly immediate:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
 
| <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x) ~=~ \bigcap_{x \in LW} (S \cdot x)</math>
 
| <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x) ~=~ \bigcap_{x \in LW} (S \cdot x)</math>
 
|}
 
|}
 +
 +
But doing the same thing for the compound relative term <math>(\mathit{s}^\mathit{l})^\mathrm{w}\!</math> is less immediate, the hang-up being that we have yet to define the case of logical involution that raises a 2-adic relative term to the power of a 2-adic relative teram.
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
12,080

edits