Changes

Line 5,545: Line 5,545:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
| height="60" | <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x</math>
+
| <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x</math>
 
|}
 
|}
   Line 5,551: Line 5,551:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
|-
+
| <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math>
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math>
   
|}
 
|}
   Line 5,585: Line 5,584:  
|}
 
|}
   −
To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
+
To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
 +
 
 +
Computing the denotation of <math>\mathit{l}^\mathrm{w}\!</math> by way of the set-theoretic formula, we can show our work as follows:
 +
 
 +
{| align="center" cellspacing="6" width="90%"
 +
| <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x ~=~ L \cdot d ~\cap~ L \cdot f ~=~ \{ c, e \} \cap \{ e, g \} ~=~ \{ e \}</math>
 +
|}
    
With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows:
 
With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows:
12,080

edits