We have now developed two ways of computing a logical involution that raises a 2-adic relative term to the power of a 1-adic absolute term, for example, <math>\mathit{l}^\mathrm{w}\!</math> for "lover of every woman".
+
+
The first method operates in the medium of set theory, expressing the denotation of the term <math>\mathit{l}^\mathrm{w}\!</math> as the intersection of a set of relational applications:
The second method operates in the matrix representation, expressing the value of the matrix <math>\mathfrak{L}^\mathfrak{w}</math> at an argument <math>u\!</math> as a product of coefficient powers:
An abstract formula of this kind is more easily grasped with the aid of a concrete example and a picture of the relations involved. The Figure below represents a universe of discourse <math>X\!</math> that is subject to the following data:
+
Abstract formulas like these are more easily grasped with the aid of a concrete example and a picture of the relations involved. The Figure below represents a universe of discourse <math>X\!</math> that is subject to the following data: