Changes

Line 5,591: Line 5,591:  
| If any of the values <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math>
 
| If any of the values <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math>
 
|}
 
|}
 +
 +
As a general observation, then, we know that the value of <math>(\mathfrak{L}^\mathfrak{W})_u</math> goes to <math>0\!</math> just as soon as we find an <math>x \in X</math> such that <math>\mathfrak{L}_{ux} = 0</math> and <math>\mathfrak{W}_x = 1,</math> in other words, such that <math>(u, x) \notin L</math> but <math>u \in W.</math>  If there is no such <math>x\!</math> then <math>(\mathfrak{L}^\mathfrak{W})_u = 1.</math>
    
===Commentary Note 12.2===
 
===Commentary Note 12.2===
12,080

edits