Line 5,535: |
Line 5,535: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_{x}}</math> | + | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> |
| |} | | |} |
| | | |
− | An abstract formula of this kind is more easily grasped with the aid of a freely chosen example and a picture of the relations involved. | + | An abstract formula of this kind is more easily grasped with the aid of a concrete example and a picture of the relations involved. The Figure below represents a universe of discourse <math>X\!</math> that is subject to the following data: |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | |
| + | <math>\begin{array}{*{14}{c}} |
| + | X & = & \{ & a, & b, & c, & d, & e, & f, & g, & h, & i & \} |
| + | \\[6pt] |
| + | W & = & \{ & d, & f & \} |
| + | \\[6pt] |
| + | L & = & \{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \} |
| + | \end{array}</math> |
| + | |} |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
Line 5,557: |
Line 5,568: |
| |} | | |} |
| | | |
− | The Figure represents a universe of discourse <math>X\!</math> that is subject to the following data:
| + | To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information. |
| + | |
| + | With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | | + | | valign="top" | 1. |
− | <math>\begin{array}{*{14}{c}} | + | | Pick a specific <math>u\!</math> in the bottom row of the Figure. |
− | X
| + | |- |
− | & = &
| + | | valign="top" | 2. |
− | \{ & a, & b, & c, & d, & e, & f, & g, & h, & i & \} | + | | Pan across the elements <math>x\!</math> in the middle row of the Figure. |
− | \\[6pt]
| + | |- |
− | W
| + | | valign="top" | 3. |
− | & = &
| + | | If <math>u\!</math> links to <math>x\!</math> then <math>\mathfrak{L}_{ux} = 1,</math> otherwise <math>\mathfrak{L}_{ux} = 0.</math> |
− | \{ & d, & f & \} | + | |- |
− | \\[6pt] | + | | valign="top" | 4. |
− | L | + | | If <math>x\!</math> in the middle row links to <math>x\!</math> in the top row then <math>\mathfrak{W}_x = 1,</math> otherwise <math>\mathfrak{W}_x = 0.</math> |
− | & = &
| + | |- |
− | \{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \}
| + | | valign="top" | 5. |
− | \end{array}</math>
| + | | Compute the value <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x} = (\mathfrak{L}_{ux}\!\Leftarrow\!\mathfrak{W}_x)</math> for each <math>x\!</math> in the middle row. |
| + | |- |
| + | | valign="top" | 6. |
| + | | If any of the values <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math> |
| |} | | |} |
− |
| |
− | For the sake of visual clarity, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
| |
| | | |
| ===Commentary Note 12.2=== | | ===Commentary Note 12.2=== |