Changes

Line 5,535: Line 5,535:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_{x}}</math>
+
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math>
 
|}
 
|}
   −
An abstract formula of this kind is more easily grasped with the aid of a freely chosen example and a picture of the relations involved.
+
An abstract formula of this kind is more easily grasped with the aid of a concrete example and a picture of the relations involved. The Figure below represents a universe of discourse <math>X\!</math> that is subject to the following data:
 +
 
 +
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<math>\begin{array}{*{14}{c}}
 +
X & = & \{ & a, & b, & c, & d, & e, & f, & g, & h, & i & \}
 +
\\[6pt]
 +
W & = & \{ & d, & f & \}
 +
\\[6pt]
 +
L & = & \{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \}
 +
\end{array}</math>
 +
|}
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
Line 5,557: Line 5,568:  
|}
 
|}
   −
The Figure represents a universe of discourse <math>X\!</math> that is subject to the following data:
+
To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
 +
 
 +
With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
|
+
| valign="top" | 1.
<math>\begin{array}{*{14}{c}}
+
| Pick a specific <math>u\!</math> in the bottom row of the Figure.
X
+
|-
& = &
+
| valign="top" | 2.
\{ & a, & b, & c, & d, & e, & f, & g, & h, & i & \}
+
| Pan across the elements <math>x\!</math> in the middle row of the Figure.
\\[6pt]
+
|-
W
+
| valign="top" | 3.
& = &
+
| If <math>u\!</math> links to <math>x\!</math> then <math>\mathfrak{L}_{ux} = 1,</math> otherwise <math>\mathfrak{L}_{ux} = 0.</math>
\{ & d, & f & \}
+
|-
\\[6pt]
+
| valign="top" | 4.
L
+
| If <math>x\!</math> in the middle row links to <math>x\!</math> in the top row then <math>\mathfrak{W}_x = 1,</math> otherwise <math>\mathfrak{W}_x = 0.</math>
& = &
+
|-
\{ & b\!:\!a, & b\!:\!c, & c\!:\!b, & c\!:\!d, & e\!:\!d, & e\!:\!f, & g\!:\!f, & g\!:\!h, & h\!:\!g, & h\!:\!i & \}
+
| valign="top" | 5.
\end{array}</math>
+
| Compute the value <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x} = (\mathfrak{L}_{ux}\!\Leftarrow\!\mathfrak{W}_x)</math> for each <math>x\!</math> in the middle row.
 +
|-
 +
| valign="top" | 6.
 +
| If any of the values <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math>
 
|}
 
|}
  −
For the sake of visual clarity, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
      
===Commentary Note 12.2===
 
===Commentary Note 12.2===
12,080

edits