\text{the set of ordered pairs in}~ L ~\text{that have}~ u ~\text{in the 1st place}.
\text{the set of ordered pairs in}~ L ~\text{that have}~ u ~\text{in the 1st place}.
\\[9pt]
\\[9pt]
−
L \cdot v
+
L \star v
& = &
& = &
L_{v \,\text{at}\, 2}
L_{v \,\text{at}\, 2}
Line 5,411:
Line 5,411:
|}
|}
−
The denotation of the term <math>\mathit{l}^\mathrm{w}\!</math> is a subset of <math>X\!</math> that can be obtained as follows: Consider the flags of the form <math>L \cdot x</math> for each <math>x \in W,</math> take their intersection <math>\textstyle\bigcap_{x \in W} L \cdot x,</math> and collect the elements of <math>X\!</math> that appear as the first components of these ordered pairs. Putting it all together:
+
The denotation of the term <math>\mathit{l}^\mathrm{w}\!</math> is a subset of <math>X\!</math> that can be obtained as follows: Consider the flags of the form <math>L \star x</math> for each <math>x \in W,</math> take their intersection <math>\textstyle\bigcap_{x \in W} L \star x,</math> and collect the elements of <math>X\!</math> that appear as the first components of these ordered pairs. Putting it all together:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
−
| <math>\mathit{l}^\mathrm{w} ~=~ \operatorname{proj}_1 \bigcap_{x \in W} L \cdot x</math>
+
| <math>\mathit{l}^\mathrm{w} ~=~ \operatorname{proj}_1 \bigcap_{x \in W} L \star x</math>