Line 3,898: |
Line 3,898: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | <math>L_{x \star j} = \{ (x_1, \ldots, x_j, \ldots, x_k) \in L : x_j = x \}.</math> | + | | <math>L_{x \,\text{at}\, j} = \{ (x_1, \ldots, x_j, \ldots, x_k) \in L : x_j = x \}.</math> |
| |} | | |} |
| | | |
− | In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 = X \times Y,</math> we can reap the benefits of a radical simplification in the definitions of the local flags. Also in this case, we tend to refer to <math>L_{u \star 1}</math> as <math>L_{u \star X}</math> and <math>L_{v \star 2}</math> as <math>L_{v \star Y}.</math> | + | In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 = X \times Y,</math> we can reap the benefits of a radical simplification in the definitions of the local flags. Also in this case, we tend to refer to <math>L_{u \,\text{at}\, 1}</math> as <math>L_{u \,\text{at}\, X}</math> and <math>L_{v \,\text{at}\, 2}</math> as <math>L_{v \,\text{at}\, Y}.</math> |
| | | |
| In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows: | | In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows: |
Line 3,908: |
Line 3,908: |
| | | | | |
| <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
− | L_{u \star X} | + | L_{u \,\text{at}\, X} |
| & = & | | & = & |
| \{ (x, y) \in L : x = u \} | | \{ (x, y) \in L : x = u \} |
Line 3,915: |
Line 3,915: |
| \text{the set of all ordered pairs in}~ L ~\text{incident with}~ u \in X. | | \text{the set of all ordered pairs in}~ L ~\text{incident with}~ u \in X. |
| \\[9pt] | | \\[9pt] |
− | L_{v \star Y} | + | L_{v \,\text{at}\, Y} |
| & = & | | & = & |
| \{ (x, y) \in L : y = v \} | | \{ (x, y) \in L : y = v \} |
Line 3,939: |
Line 3,939: |
| |} | | |} |
| | | |
− | The local flag <math>E_{3 \star X}</math> is displayed here: | + | The local flag <math>E_{3 \,\text{at}\, X}</math> is displayed here: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
Line 3,954: |
Line 3,954: |
| |} | | |} |
| | | |
− | The local flag <math>E_{2 \star Y}</math> is displayed here: | + | The local flag <math>E_{2 \,\text{at}\, Y}</math> is displayed here: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
Line 3,973: |
Line 3,973: |
| Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions. | | Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions. |
| | | |
− | For instance, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \star j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \star j}| = c</math> for all <math>x \in X_j.</math> | + | For instance, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \,\text{at}\, j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \,\text{at}\, j}| = c</math> for all <math>x \in X_j.</math> |
| | | |
| In a similar fashion, one can define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, I record a few of these definitions here: | | In a similar fashion, one can define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, I record a few of these definitions here: |
Line 3,982: |
Line 3,982: |
| L ~\text{is}~ c\text{-regular at}~ j | | L ~\text{is}~ c\text{-regular at}~ j |
| & \iff & | | & \iff & |
− | |L_{x \star j}| = c ~\text{for all}~ x \in X_j. | + | |L_{x \,\text{at}\, j}| = c ~\text{for all}~ x \in X_j. |
| \\[6pt] | | \\[6pt] |
| L ~\text{is}~ (< c)\text{-regular at}~ j | | L ~\text{is}~ (< c)\text{-regular at}~ j |
| & \iff & | | & \iff & |
− | |L_{x \star j}| < c ~\text{for all}~ x \in X_j. | + | |L_{x \,\text{at}\, j}| < c ~\text{for all}~ x \in X_j. |
| \\[6pt] | | \\[6pt] |
| L ~\text{is}~ (> c)\text{-regular at}~ j | | L ~\text{is}~ (> c)\text{-regular at}~ j |
| & \iff & | | & \iff & |
− | |L_{x \star j}| > c ~\text{for all}~ x \in X_j. | + | |L_{x \,\text{at}\, j}| > c ~\text{for all}~ x \in X_j. |
| \\[6pt] | | \\[6pt] |
| L ~\text{is}~ (\le c)\text{-regular at}~ j | | L ~\text{is}~ (\le c)\text{-regular at}~ j |
| & \iff & | | & \iff & |
− | |L_{x \star j}| \le c ~\text{for all}~ x \in X_j. | + | |L_{x \,\text{at}\, j}| \le c ~\text{for all}~ x \in X_j. |
| \\[6pt] | | \\[6pt] |
| L ~\text{is}~ (\ge c)\text{-regular at}~ j | | L ~\text{is}~ (\ge c)\text{-regular at}~ j |
| & \iff & | | & \iff & |
− | |L_{x \star j}| \ge c ~\text{for all}~ x \in X_j. | + | |L_{x \,\text{at}\, j}| \ge c ~\text{for all}~ x \in X_j. |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |