Here, the order of relational composition flows up the page. For convenience, the absolute term ''f'' = "frenchman" has been converted by using the comma functor to give the idempotent representation ‘''f''’ = ''f'', = "frenchman that is ---", and thus it can be taken as a selective from the universe of mankind.
+
In this picture the order of relational composition flows up the page. For convenience, the absolute term <math>\mathrm{f} = \text{Frenchman}\!</math> has been converted by means of the comma functor to give the idempotent representation <math>\mathrm{f,} = \text{Frenchman that is}\,\underline{~~~~}.</math> In this way it can be taken as a selective from the universe of mankind.
By way of a legend for the figure, we have the following data:
By way of a legend for the figure, we have the following data: