Changes

Line 4,039: Line 4,039:  
In the case of a 2-adic relation ''F'' ⊆ ''X'' × ''Y'' that has the qualifications of a function ''f'' : ''X'' → ''Y'', there are a number of further differentia that arise:
 
In the case of a 2-adic relation ''F'' ⊆ ''X'' × ''Y'' that has the qualifications of a function ''f'' : ''X'' → ''Y'', there are a number of further differentia that arise:
   −
{| align="center" cellspacing="6" width="90%" <!--QUOTE-->
+
:{| cellpadding="4"
|
  −
{| cellpadding="4"
   
| ''f'' is "surjective"
 
| ''f'' is "surjective"
 
| iff
 
| iff
Line 4,053: Line 4,051:  
| iff
 
| iff
 
| ''f'' is 1-regular at ''Y''.
 
| ''f'' is 1-regular at ''Y''.
|}
   
|}
 
|}
    
For example, or more precisely, contra example, the function ''f''&nbsp;:&nbsp;''X''&nbsp;&rarr;&nbsp;''Y'' that is depicted below is neither total at ''Y'' nor tubular at ''Y'', and so it cannot enjoy any of the properties of being sur-, or in-, or bi-jective.
 
For example, or more precisely, contra example, the function ''f''&nbsp;:&nbsp;''X''&nbsp;&rarr;&nbsp;''Y'' that is depicted below is neither total at ''Y'' nor tubular at ''Y'', and so it cannot enjoy any of the properties of being sur-, or in-, or bi-jective.
    +
{| align="center" cellspacing="6" width="90%"
 +
|
 
<pre>
 
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
Line 4,067: Line 4,066:  
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
</pre>
 
</pre>
 +
|}
    
A cheap way of getting a surjective function out of any function is to reset its codomain to its range.  For example, the range of the function ''f'' above is ''Y''&prime;&nbsp;=&nbsp;{0,&nbsp;2,&nbsp;5,&nbsp;6,&nbsp;7,&nbsp;8,&nbsp;9}.  Thus, if we form a new function ''g'' : ''X'' &rarr; ''Y''&prime; that looks just like ''f'' on the domain ''X'' but is assigned the codomain ''Y''&prime;, then ''g'' is surjective, and is described as mapping "onto" ''Y''&prime;.
 
A cheap way of getting a surjective function out of any function is to reset its codomain to its range.  For example, the range of the function ''f'' above is ''Y''&prime;&nbsp;=&nbsp;{0,&nbsp;2,&nbsp;5,&nbsp;6,&nbsp;7,&nbsp;8,&nbsp;9}.  Thus, if we form a new function ''g'' : ''X'' &rarr; ''Y''&prime; that looks just like ''f'' on the domain ''X'' but is assigned the codomain ''Y''&prime;, then ''g'' is surjective, and is described as mapping "onto" ''Y''&prime;.
    +
{| align="center" cellspacing="6" width="90%"
 +
|
 
<pre>
 
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
Line 4,079: Line 4,081:  
0      2          5  6  7  8  9
 
0      2          5  6  7  8  9
 
</pre>
 
</pre>
 +
|}
    
The function ''h'' : ''Y''&prime; &rarr; ''Y'' is injective.
 
The function ''h'' : ''Y''&prime; &rarr; ''Y'' is injective.
    +
{| align="center" cellspacing="6" width="90%"
 +
|
 
<pre>
 
<pre>
 
0      2          5  6  7  8  9
 
0      2          5  6  7  8  9
Line 4,091: Line 4,096:  
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
</pre>
 
</pre>
 +
|}
    
The function ''m'' : ''X'' &rarr; ''Y'' is bijective.
 
The function ''m'' : ''X'' &rarr; ''Y'' is bijective.
    +
{| align="center" cellspacing="6" width="90%"
 +
|
 
<pre>
 
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
Line 4,103: Line 4,111:  
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
</pre>
 
</pre>
 +
|}
    
===Commentary Note 11.11===
 
===Commentary Note 11.11===
12,080

edits