Changes

Line 2,096: Line 2,096:  
|}
 
|}
   −
Previously, we represented absolute terms as column vectors.  The above four terms are given by the columns of this table:
+
Previously, we represented absolute terms as column vectors.  The above four terms are given by the columns of the following table:
   −
<pre>
+
{| align="center" cellspacing="6" width="90%"
  | 1 m n w
+
|
---o---------
+
<math>\begin{array}{c|cccc}
B | 1 0 0 1
+
\text{  } & \mathbf{1} & \mathrm{m} & \mathrm{n} & \mathrm{w}
C | 1 1 1 0
+
\\
D | 1 0 1 1
+
\text{---} & \text{---} & \text{---} & \text{---} & \text{---}
E | 1 0 0 1
+
\\
I | 1 1 0 0
+
\mathrm{B} & 1 & 0 & 0 & 1
J | 1 1 0 0
+
\\
O | 1 1 1 0
+
\mathrm{C} & 1 & 1 & 1 & 0
</pre>
+
\\
 +
\mathrm{D} & 1 & 0 & 1 & 1
 +
\\
 +
\mathrm{E} & 1 & 0 & 0 & 1
 +
\\
 +
\mathrm{I} & 1 & 1 & 0 & 0
 +
\\
 +
\mathrm{J} & 1 & 1 & 0 & 0
 +
\\
 +
\mathrm{O} & 1 & 1 & 1 & 0
 +
\end{array}</math>
 +
|}
    
One way to represent sets in the bigraph picture is simply to mark the nodes in some way, like so:
 
One way to represent sets in the bigraph picture is simply to mark the nodes in some way, like so:
12,080

edits