Changes

Line 1,211: Line 1,211:  
Since multiplication by a 2-adic relative term is a logical analogue of matrix multiplication in linear algebra, all of the products that we computed above can be represented in terms of logical matrices and logical vectors.
 
Since multiplication by a 2-adic relative term is a logical analogue of matrix multiplication in linear algebra, all of the products that we computed above can be represented in terms of logical matrices and logical vectors.
   −
Here are the absolute terms again, followed by their representation as "coefficient tuples", otherwise thought of as "coordinate vectors".
+
Here are the absolute terms again, followed by their representation as ''coefficient tuples'', otherwise thought of as ''coordinate vectors''.
   −
: 1 = B +, C +, D +, E +, I +, J +, O
+
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<math>\begin{array}{ccrcccccccccccl}
 +
\mathbf{1}
 +
& =     & \mathrm{B}
 +
& +\!\!, & \mathrm{C}
 +
& +\!\!, & \mathrm{D}
 +
& +\!\!, & \mathrm{E}
 +
& +\!\!, & \mathrm{I}
 +
& +\!\!, & \mathrm{J}
 +
& +\!\!, & \mathrm{O}
 +
\\[10pt]
 +
& = & (1 & , & 1 & , & 1 & , & 1 & , & 1 & , & 1 & , & 1)
 +
\\[20pt]
 +
\mathrm{b}
 +
& = &
 +
&  &
 +
&  &
 +
&  &
 +
&  &
 +
&  &
 +
&  &
 +
\mathrm{O}
 +
\\[10pt]
 +
& = & (0 & , & 0 & , & 0 & , & 0 & , & 0 & , & 0 & , & 1)
 +
\\[20pt]
 +
\mathrm{m}
 +
& =      &
 +
&        & \mathrm{C}
 +
&        &
 +
&        &
 +
& +\!\!, & \mathrm{I}
 +
& +\!\!, & \mathrm{J}
 +
& +\!\!, & \mathrm{O}
 +
\\[10pt]
 +
& = & (0 & , & 1 & , & 0 & , & 0 & , & 1 & , & 1 & , & 1)
 +
\\[20pt]
 +
\mathrm{w}
 +
& =      & \mathrm{B}
 +
&        &
 +
& +\!\!, & \mathrm{D}
 +
& +\!\!, & \mathrm{E}
 +
&        &
 +
&        &
 +
&        &
 +
\\[10pt]
 +
& = & (1 & , & 0 & , & 1 & , & 1 & , & 0 & , & 0 & , & 0)
 +
\end{array}</math>
 +
|}
   −
:: = <1, 1, 1, 1, 1, 1, 1>
+
Since we are going to be regarding these tuples as ''column vectors'', it is convenient to arrange them into a table of the following form:
 
  −
: b = O
  −
 
  −
:: = <0, 0, 0, 0, 0, 0, 1>
  −
 
  −
: m = C +, I +, J +, O
  −
 
  −
:: = <0, 1, 0, 0, 1, 1, 1>
  −
 
  −
: w = B +, D +, E
  −
 
  −
:: = <1, 0, 1, 1, 0, 0, 0>
  −
 
  −
Since we are going to be regarding these tuples as "column vectors", it is convenient to arrange them into a table of the following form:
      
<pre>
 
<pre>
12,080

edits