Changes

Line 2,258: Line 2,258:  
==Note 27==
 
==Note 27==
   −
<pre>
+
===Interpretation of the Propositional Program (cont.)===
Interpretation of the Propositional Program (cont.)
+
 
 +
'''State Partition'''
   −
State Partition:
+
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\begin{array}{l}
 +
\texttt{((~p0\_q0~),(~p0\_q1~),(~p0\_q\#~),(~p0\_q*~))}
 +
\\
 +
\texttt{((~p1\_q0~),(~p1\_q1~),(~p1\_q\#~),(~p1\_q*~))}
 +
\\
 +
\texttt{((~p2\_q0~),(~p2\_q1~),(~p2\_q\#~),(~p2\_q*~))}
 +
\end{array}</math>
 +
|}
   −
  (( p0_q0 ),( p0_q1 ),( p0_q# ),( p0_q* ))
+
In cactus syntax, an expression of the form <math>\texttt{((} e_1 \texttt{),(} e_2 \texttt{),(} \ldots \texttt{),(} e_k \texttt{))}</math> expresses a statement to the effect that ''exactly one of the expressions <math>e_j\!</math> is true, for <math>j = 1 ~\mathit{to}~ k.</math>''  Expressions of this form are called ''universal partition'' expressions, and the corresponding ''painted and rooted cactus'' (PARC) has the following shape:
  (( p1_q0 ),( p1_q1 ),( p1_q# ),( p1_q* ))
  −
  (( p2_q0 ),( p2_q1 ),( p2_q# ),( p2_q* ))
     −
In cactus syntax, an expression of the form "((e_1),(e_2),(...),(e_k))"
+
<br>
expresses the fact that "exactly one of the e_j is true, for j = 1 to k".
  −
Expressions of this form are called "universal partition" expressions, and
  −
the corresponding "painted and rooted cactus" (PARC) has the following shape:
      +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 2,291: Line 2,297:  
|      ((e_1),(e_2),(...),(e_k))      |
 
|      ((e_1),(e_2),(...),(e_k))      |
 
o---------------------------------------o
 
o---------------------------------------o
 +
</pre>
   −
The State Partition segment of the propositional program
+
<br>
consists of three universal partition expressions, taken
  −
in conjunction expressing the condition that M has to be
  −
in one and only one of its states at each point in time
  −
under consideration.  In short, we have the constraint:
     −
  At each of the points in time p_i, for i in the set {0, 1, 2}
+
The State Partition segment of the propositional program consists of three universal partition expressions, taken in conjunction expressing the condition that <math>M\!</math> has to be in one and only one of its states at each point in time under consideration.  In short, we have the constraint:
  M can be in exactly one state q_j, for j in the set {0, 1, #, *}.
+
 
</pre>
+
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<p>At each of the points in time <math>p_i,\!</math> for <math>i\!</math> in the set <math>\{ 0, 1, 2 \},\!</math></p>
 +
 
 +
<p><math>M\!</math> can be in exactly one state <math>q_j,\!</math> for <math>j\!</math> in the set <math>\{ 0, 1, \#, * \}.</math></p>
 +
|}
    
==Note 28==
 
==Note 28==
12,080

edits