Line 2,183: |
Line 2,183: |
| | | |
| A text string expression of the form <math>\texttt{(p(q))}</math> corresponds to a graph-theoretic data-structure of the following form: | | A text string expression of the form <math>\texttt{(p(q))}</math> corresponds to a graph-theoretic data-structure of the following form: |
| + | |
| + | <br> |
| | | |
| <pre> | | <pre> |
Line 2,196: |
Line 2,198: |
| o---------------------------------------o | | o---------------------------------------o |
| </pre> | | </pre> |
| + | |
| + | <br> |
| | | |
| Taken together, the Mediate Conditions state the following: | | Taken together, the Mediate Conditions state the following: |
| | | |
− | <pre> | + | {| align="center" cellpadding=8" width="90%" |
− | If M at p_0 is in state q_#, then M at p_1 is in state q_#, and
| + | | |
− | If M at p_0 is in state q_*, then M at p_1 is in state q_*, and
| + | <p>If <math>M\!</math> at <math>p_0\!</math> is in state <math>q_\#,\!</math> then <math>M\!</math> at <math>p_1\!</math> is in state <math>q_\#,\!</math> and</p> |
− | If M at p_1 is in state q_#, then M at p_2 is in state q_#, and
| + | |
− | If M at p_1 is in state q_*, then M at p_2 is in state q_*.
| + | <p>If <math>M\!</math> at <math>p_0\!</math> is in state <math>q_*,\!</math> then <math>M\!</math> at <math>p_1\!</math> is in state <math>q_*,\!</math> and</p> |
− | </pre> | + | |
| + | <p>If <math>M\!</math> at <math>p_1\!</math> is in state <math>q_\#,\!</math> then <math>M\!</math> at <math>p_2\!</math> is in state <math>q_\#,\!</math> and</p> |
| + | |
| + | <p>If <math>M\!</math> at <math>p_1\!</math> is in state <math>q_*,\!</math> then <math>M\!</math> at <math>p_2\!</math> is in state <math>q_*.\!</math></p> |
| + | |} |
| | | |
| ==Note 26== | | ==Note 26== |